
Games of Incomplete Information and Bayesian Games (July 24, July 27)

I. Games of Complete Information and Games of Incomplete Information

• Up until this point, it was assumed that all players knew completely the structure

of the game, and that each player knew that the other players knew this as well · · ·
→ complete information game (not to be confused with perfect information for

extensive form games)

• What if some parts of the game – actions, payoffs, etc. – was not known to some

of the players?

• In such a case, the game is said to be of incomplete information. Tools intro-

duced so far cannot be directly applied to such situations

• Today’s topic: Bayesian games. Convert a game of incomplete information →
a game of complete information (with imperfect information) called a Bayesian

game.

II. A Conversion into Bayesian Games

• Let G = (N, (Ai)i∈N , (ui)i∈N ) be the base game (similar to the stage game for

repeated games).

• Consider the case in which the payoffs may not be known. For each i ∈ N , introduce

the set of types Ti. The set of types are used to define the different possibilities of

outcomes. Assume that for each i, Ti is a finite set.

• The game starts with an artificial player, named “Nature” selects the types of all

the players t = (t1, t2, · · · , tn) ∈
∏

i∈N Ti ≡ T . Nature has no payoff function so

that there is no incentive behind choosing a particular type.

• Nature selects the types randomly so that it is as if Nature is playing a behavioral

strategy by specifying a probability distribution over the set of types. Formally,

Nature chooses (t1, t2, · · · , tn) with probability p(t1, t2, · · · , tn) where p is the (joint)

distribution function. p is often called the prior distribution. This p is known to

all players.

• Formally, the prior distribution is a function p : T → R such that p(t) ≥ 0 and∑
t∈T p(t) = 1.
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• After the types are chosen, each player can observe his/her own type but not of the

other players.

• A rough sketch of the game tree will be drawn in class.

• Recall that a strategy is defined as a function on the set of information sets to the

set of actions. A strategy in a Bayesian game, denoted by si, is then a function

from Ti to Ai. That is, it associates to each type ti ∈ Ti an action in Ai, denoted

by si(ti). Let Si be the set of strategies for each i ∈ N and let S ≡
∏

i∈N Si.

• The payoff function ui of the base game now depends on the types of all players.

ui : A×T → R where A ≡
∏

i∈N Ai.

• The payoff function of the Bayesian game is given by the expectation of the payoffs

over all types and is defined as a function over the set of strategy combinations.

The assumption is that these payoffs are calculated at the beginning of the game –

before Nature chooses a combination of types.

• Formally, the expected payoff function of i, denoted by Eui : S → R is given by

the following equation.

Eui(s1, s2, · · · , sn) =
∑
t∈T

p(t1, t2, · · · , tn) ui ((s1(t1), s2(t2), · · · , sn(tn)), (t1, t2, · · · , tn))

III. Bayesian Nash Equilibrium – Two Definitions

Definition 1. A strategy profile s∗ is said to be a Bayesian Nash equilibrium

(BNE) if it a Nash equilibrium of the Bayesian game. That is, for all i ∈ N and for

all si ∈ Si,

Eui(s
∗
i , s

∗
−i) ≥ Eui(si, s

∗
−i)

• The way in which the expected utility is taken suggests that players themselves do

not know of their own types when these values are computed. This is because at

the beginning of the game, Nature has not selected the types of all the players.

Thus, the expectation for each player is taken as if they do not know of their types.

• However, in the incomplete information setting, each player knows his/her own type

but not of the others.
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• Below is a definition of Bayesian Nash equilibrium for that scenario.

Definition 1’. A strategy profile s∗ is said to be a Bayesian Nash equilibrium

(BNE) if for all i ∈ N , for all ti ∈ Ti, and for all ai ∈ Ai,

Eui(s
∗
i (ti), s

∗
−i|ti) ≥ Eui(ai, s

∗
−i|ti)

where Eui represents player i’s conditional expected payoff, given that player i’s type

is ti.

• The expectation is taken over the conditional probability distribution of the other

players’ types t−i given that the player i’s type is ti.

• Review of joint distribution, marginal distribution, conditional probability distri-

bution

– Let t ∈ T and recall p(t) where t = (t1, t2, · · · , tn) represents the probability

that player 1’s type is t1, player 2’s type is t2, · · · , player n’s type is tn. It is

assumed that

p(t) ≥ 0 ∀t ∈ T and
∑
t∈T

p(t) = 1.

p is called the joint probability distribution of (t1, t2, · · · , tn)

– Given p, the marginal distribution of ti, denoted by pi, denotes the probability

that player i’s type is ti. That is,

pi(ti) =
∑

t′−i∈T−i

p(ti, t
′
−i)

– The conditional probability of the other players’ types given that i’s type is

ti, denoted by p(t−i|ti) is given by the following formula:

p(t−i|ti) =
p(ti, t−i)

pi(ti)
=

p(ti, t−i)∑
t′−i∈T−i

p(ti, t′−i)

– When the types are independent, then the joint distribution p satisfies the

following:

p(t1, t2, · · · , tn) = p1(t1)p2(t2) · · · pn(tn)

• It can be shown that these two definitions are equivalent.
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• All the above can be extended to the case when there are a continuum of types of

players.

– Instead of p, Nature selects the types of the players from a joint (cumulative)

distribution function F , usually assumed to have a density function f .

– Summation (
∑

) should be replaced by integration (
∫
)

IV. Example

• 2 players N = {1, 2}. A1 = {C,D} and A2 = {C,D}. Player 2 is informed which

game is played, but player 1 only knows that prisoner’s dilemma is played with

probability 1/3, and chicken game is played with probability 2/3. The two games

are given below (the same numbers as in the first lecture).

1 \ 2 C D

C −2,−2 −6, 0

D 0,−6 −5,−5

1 \ 2 C D

C 0, 0 −2, 2

D 2,−2 −5,−5

• To formulate this situation into a Bayesian game, introduce the following types.

Player 1 only has one type T1 = {t1}. Player 2 has two types, corresponding to the

two different games: T2 = {t2, t′2} where t2 corresponds to the prisoner’s dilemma,

and t′2 corresponds to the chicken game.

• u1((C,C), (t1, t2)) = −2, while u1((C,C), (t1, t
′
2)) = 0 etc. (Some more examples

may be computed in class.)

• Strategy for player 1: Choose C or D; strategy for player 2: Choose C or D in

the prionser’s dilemma, choose C or D in the chicken game. Denote by (x− y) as

the strategy in which player 2 chooses x ∈ {C,D} in the prisoner’s dilemma and

y ∈ {C,D} in the chicken game.

• To compute BNE from Definition 1, need to compute the Eui for i = 1, 2. This is

summarized below.

1 \ 2 C − C D − C C −D D −D

C −2/3,−2/3 −2, 0 −2, 2/3 −10/3, 4/3

D 4/3,−10/3 −1/3,−3 −10/3,−16/3 −5,−5

• Two BNE: (D,D − C) and (C,D −D)

• Check by Definition 1’ that these two are BNE under that definition.
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V. Continuum of Types – First-price Auction

• Consider a first-price sealed-bid auction.

– Each bidder submits a bid in a sealed envelope so that no other bidder can

see that bid.

– The bidder with the highest bid wins the object and pays the amount that

he/she bid. The other bidders do not win the object but does not have to pay.

– Let vi be bidder i’s valuation and bi be the bid made by i. If i wins the object,

i’s payoff is vi − bi; if i does not win the object, i’s payoff is 0.

• Suppose there are n bidders. Each bidder knows his/her own valuation vi but not

of the other players.

• These valuations correspond to the types in a Bayesian game. Assume that each

bidder’s type is drawn randomly from a uniform distribution with support [0, 1]

(F (v) = v) and independently. This implies that the highest valuation of a bidder

is 1, while the lowest is 0.

• Strategy of i: a function βi : [0, 1] → R+ such that βi(vi) represents the bid made

by bidder i when his/her valuation is vi.

• Objective: to find a Bayesian Nash equilibrium of this game (β∗
1 , β

∗
2 , · · · , β∗

n) such

that

– it is symmetric – that is each bidder uses the same strategy (β∗
1 = β∗

2 = · · · =
β∗
n)

– it is differentiable with respect to vi

– it is strictly increasing in vi

• It can be shown that there exists such a Bayesian Nash equilibrium and β∗
1 = β∗

2 =

· · · = β∗
n = β∗ where β∗ is given by the following.

β∗(v) =
n− 1

n
v

VI. Signaling

• N = {1, 2}: the set of players. Consider player 1 as a “worker” and player 2 as a

“firm.”
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• Suppose that player 1 has two possible types: T1 = {H,L}, where H denotes “high

ability,” and L denotes “low ability.” Player 2 has only one type – description of

player 2’s types will be omitted in this section. Player 2 does not know the type of

player 1. Suppose p(H) = p(L) = 0.5.

• The firm (player 2) has to set wages for the worker and has two choices: W (high

wage) or w (low wage). Suppose that regardless of type, player 1’s payoff when

receiving a high wage is 6, while a low wage is 3.

• The payoffs to the firm are given by the following table:

High Low

W 6 1

w 2 5

• Because player 2 does not know whether player 1 is a high-ability work or low-ability

worker but does know the prior distribution, player 2 can calculate the expected

payoff from offering W or w:

– W : (1/2)× 6 + (1/2)× 1 = 7/2

– w: (1/2)× 5 + (1/2)× 3 = 8/2 = 4

Therefore, player 2 should offer w.

• This is inefficient, and the high-ability type would prefer to be able to show that

he/she has high ability → signal

• As an example, suppose that each type has the option of going to school (S) or not

(N)

• The cost of schooling: 2 for high ability, 5 for low ability.

• Game tree will be drawn in class.

• Two sequential equilibria:

1. (S −N,W − w, ((1, 0), (0, 1))) (separating equilibrium)

2. (S − S,w − w, ((p, 1− p), (1/2, 1/2))) where p ≤ 1/2 (pooling equilibrium)

• First equilibrium is such that schooling acts as an effective signal such that by

observing it, player 2 now can figure out which type player 1 is from this information.
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• Second equilibrium is such that schooling is not an effective signal.

• This second equilibrium is not “intuitive,” especially the belief p ≤ 1/2. Suppose

that player 2 observes that player 1 had received schooling. A low ability player 1

cannot benefit from doing so as the possible payoffs of 1 and −2 are below 6 and 3,

so this player must be a high-ability player, and the belief with p ≤ 1/2 does not

seem to make sense (although, it is consistent).

• Refinement of sequential equilibrium related to the previous argument for signaling

games: Cho and Kreps (1987)

VII. Other Topics

• Corresponding sections in the text:

– Bayesian games: Mas-Colell, Whinston, and Green (1995), Section 8.E

• Sufficient condition for the existence of a pure strategy Bayesian Nash equilibrium

– Earlier papers: Radner and Rosenthal (1982), Milgrom and Weber (1985)

– Techniques using supermodularity: Vives (1990), Athey (2001)

• Robust equilibrium

– a refinement of Nash equilibrium such that it is robust to changes in the

information of the players, defined in Kajii and Morris (1997)

– the maximizer of exact potential is a robust equilibrium (Ui (2001))

• Global games (Carlsson and van Damme (1993))

– Global games involve incomplete information in payoff of the game, but each

player receives a (private) signal regarding that unknown payoff. Based on that

signal, each player then formulates beliefs about the other players’ signals and

what type of actions they might take.

– Common example:

1 \ 2 Invest Not Invest

Invest θ, θ θ − 1, 0

Not Invest 0, θ − 1 0, 0

– The value of θ is not known to either player, but the prior distribution is

known.
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– Each player i ∈ {1, 2} independently receives some signal si regarding the

value of θ.

– applications in monetary economics – Morris and Shin (1998), Rochet and

Vives (2004)
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