
Finitely and Infinitely Repeated Games (July 17)

I. Prisoner’s Dilemma Revisited

• Consder once again the prisoner’s dilemma. For today’s lecture, the following payoff

matrix is used.

1 \ 2 C D

C 6, 6 0, 8

D 8, 0 2, 2

• Choosing D is rational, but usually in everyday life, people do not always betray

others.

• Reason: The assumption that the game is played only once may be a key factor.

• Question: How does the analysis change when the same game is played more than

once? → repeated games.

• Keywords: Finitely repeated games, Infinitely repeated games, Folk Theorem

II. Prisoner’s Dilemma Repeated Twice

• Suppose now that the prisoner’s dilemma game is repeated twice. (A game tree

will be drawn in class)

• The payoff for each player i in the repeated game is given by the following formula.

(Payoff in the first game) + δi (Payoff in the second game)

δi: discount factor of player i, 0 < δi < 1. Payoff in the second game is worth δi

times the payoff in the first game.

• Another interpretation of δi: exogenously determined probability that the repeated

game continues. (At each repetition, the game then ends with probability 1− δi.)

• A strategy for a player is given in the form

– Choose from {C,D} to play in the first prisoner’s dilemma game.

– For each outcome ((C,C), (C,D), (D,C), (D,D)), assign C or D. Essentially,

the second part of the strategy is a function from {C,D}× {C,D} to {C,D}.
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– 2 · 24 = 25 = 32 pure strategies for each player.

• The following fact can be checked directly.

In the twice-repeated prisoner’s dilemma, the following strategy taken by each player

is the unique subgame-perfect equilibrium:

• Play D first.

• Play D in the second game, regardless of what happens in the first game.

Informally, this strategy is described by the phrase, ”always play D.”

III. Finitely Repeated Games

• Let G = (N, (Si)i∈N , (ui)i∈N ) be the component game or stage game, which

is to be repeated. It is assumed that within a repetition, each player i chooses an

action in Si independently and simultaneously.

• At the end of each repetition, each player is informed of the choices made by the

other players.

• Concept of a strategy:

– For the twice repeated prisoner’s dilemma game – the decision node for player

1, when the game is played a second time, can be characterized by the sequence

of actions taken previously = history. Moreover, player 2’s information set in

the second repetition can also be characterized by the same history.

– History at time t, ht, is such that ht = (a1, a2, · · · , at−1) where for each 1 ≤
τ ≤ t − 1, aτ ∈ S :=

∏
i∈N Si. h1 := ∅ denotes the “empty” history. Let Ht

be the set of possible histories at the beginning of the t-th repetition. Here we

assume that this set is the same for all players since at the beginning of each

repetition, the information given to them is the same.

– A strategy for each i ∈ N is given by the sequence σi = (σ1
i , σ

2
i , · · · ) such that

for each t ≥ 2, σt
i : H

t → Si. For t = 1, for notational ease, let σ1
i ∈ Si for all

i ∈ N .

• Payoffs –

– Payoff function defined on terminal node.
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– Each terminal node can be characterized by a sequence of action profiles →
Payoff defined on sequence of action profiles.

– Payoffs are discounted so that payoffs for player i in the t-th repetition is worth

δt−1
i as much as payoffs in the 1st repetition, where 0 < δi < 1.

– Let (a1, a2, · · · , aT ) be a sequence of action profiles. Then, player i’s payoff

function Ui in the T -repetitions of the game G is given by

Ui(a
1, a2, · · · , aT ) =

T∑
t=1

δt−1
i ui(a

t)

• The previous result for the prisoner’s dilemma can be generalized in the following

way.

Proposition 1. Let G be a strategic form game with a unique Nash equilibrium a∗.

Then, the game G repeated T times, where T is a positive integer, has a unique

subgame-perfect equilibrium in which each player i plays a∗i each time, regardless of

what happens in the previous repetitions of G.

• In terms of the prisoner’s dilemma, as long as it is repeated a finite number of times,

the only subgame-perfect equilibrium is for each player to always choose D.

• Same result as in the original game

• Key assumptions:

– Unique Nash equilibrium in the stage game. (See Question 1 for when there

is more than one Nash equilibrium.)

– Finite repetition – different set of results for infinitely repeated games.

IV. Infinitely Repeated Games – Formal Definition

• Infinitely repeated game – approximation of a situation in which the end of the

game is not known for certain.

• The concept of strategy is defined in the same manner as the previous section.

• Need a new set of definitions because the length of the game is no longer finite –

no terminal nodes.
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• Payoffs now defined on an infinite sequence of action profiles.

– Let (a1, a2, · · · ) be an infinite sequence of action profiles. Then, the payoffs in

the infinitely repeated game is given by

Ui(a
1, a2, · · · ) =

∞∑
t=1

δt−1
i ui(a

t)

– Because payoffs of an infinite stream may not seem intuitive, average payoffs

are used and is defined by

(1− δi)
∞∑
t=1

δt−1
i ui(a

t)

• There are many subgame-perfect equilibria of an infinitely repeated game G, even

if G has only one Nash equilibrium → Folk Theorem (to be discussed in the next

section).

• To check subgame-perfect equilibrium – ”one-shot deviation principle” (in supple-

mentary material).

V. Folk Theorem

• Once again, consider the prisoner’s dilemma as an example. Consider the following

strategy, which is often called a trigger strategy:

– Choose C first.

– If at least one player chooses D at some t∗, then choose D for t-th repetition,

where t ≥ t∗ + 1.

• The “trigger” refers to when someone (including the player himself/herself) chooses

D, from which point the player chooses D forever.

• Because one such deviation from C initiates an unending punishment of taking D,

the strategy above is sometimes called the “grim trigger” strategy.

Fact 1. For δi sufficiently close to 1 for all i ∈ N , the trigger strategy defined above

played by both players is a Nash equilibrium in the infinitely repeated prisoner’s

dilemma game.

4



• The above result is a special case of the “folk theorem.” To state the folk theorem,

define for each i ∈ N the minimax value of the game G:

vi = min
s−i∈S−i

max
si∈Si

ui(si, s−i).

• Below is a “classical” folk theorem

Theorem 1. Let G be a stage game, and let vi be the minimax value of player i ∈ N .

Take any outcome a ∈
∏

i∈N Si such that ui(a) > vi for all i ∈ N . Then, there exists

δ̄ with 0 < δ̄ < 1 such that for all δi > δ̄, there exists a Nash equilibrium σ∗ such that

the average payoff for player i ∈ N equals ui(a).

• Note above theorem stated in terms of Nash equilibrium → How about subgame-

perfect equilibrium?

Fact 2. For δi sufficiently close to 1 for all i ∈ N , the trigger strategy defined above

is a subgame-perfect equilibrium in the infinitely repeated prisoner’s dilemma game.

• The above result is a special case of the following.

Proposition 2. Let G be a stage game and let a∗ be a Nash equilibrium of G. Let

a ∈
∏

i∈N Si be an action profile such that ui(a) > ui(a
∗) for all i ∈ N . Then, there

exists δ̄ ∈ (0, 1) such that for all δi > δ̄, there exists a subgame-perfect equilibrium

with average payoff equal to ui(a) for each i ∈ N .

• General results:

– Extend the results of Theorem 1 to any payoffs in the convex hull of possible

payoffs.

– Under the additional condition of full dimensionality of the above convex hull

or in the case of two players, Theorem 1 can be strengthened by replacing

“Nash equilibrium” with “subgame-perfect equilibrium.”
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– The strategy used – a trigger strategy with two punishment stages.

VI. Other Topics and Literature

• Folk theorems listed here can be found in Fudenberg and Maskin (1986). Proposi-

tion 2 is from Friedman (1971).

• Optimal penal code and characterization of subgame-perfect equilibrium

– In Abreu (1988), a simplified concept of strategy is used to analyze subgame-

perfect equilibrium – (simple) penal code.

– The strategy prescribes what is to be taken initially, what is to be taken if

someone defects – strategy described through paths of actions.

– This technique is used to calculate the subgame-perfect equilibria of the in-

finitely repeated Cournot duopoly games in Abreu (1986).

• Renegotiation-proof equilibrium (Farrell and Maskin (1989), Bernheim and Ray

(1989))

– Players are allowed at each stage to renegotiate on the strategy being played.

– For example, once the trigger is implemented, would it be in the interest for

all players involved to follow the grim trigger strategy with this renegotiation

option.

• Imperfect monitoring

– To implement the trigger strategy, deviations need to be detected. In the folk

theorem, it is assumed that each player can detect a deviation once it occurs.

– A weakening of this assumption is that such monitoring is not perfect – devi-

ations may not be detected.

– Each player receives a noisy signal about the actions of the others.

– Folk theorem in this case (Fudenberg, Levine, and Maskin (1994)), using se-

quential equilibria (the topic of next lecture).

• Payoffs: limT→∞
1
T

∑T
t=1 ui(a

t) instead of discounting. (The folk theorem in this

case called ”The Aumann-Shapley/Rubinstein folk theorem” in Fudenberg and

Maskin (1986).)
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