Finitely and Infinitely Repeated Games (July 17)

I. Prisoner’s Dilemma Revisited

e Consder once again the prisoner’s dilemma. For today’s lecture, the following payoff

matrix is used.

1\2| ¢ | D
C |6,6]08
D |8,0]22

e Choosing D is rational, but usually in everyday life, people do not always betray

others.
e Reason: The assumption that the game is played only once may be a key factor.

e Question: How does the analysis change when the same game is played more than

once? — repeated games.
e Keywords: Finitely repeated games, Infinitely repeated games, Folk Theorem
II. Prisoner’s Dilemma Repeated Twice

e Suppose now that the prisoner’s dilemma game is repeated twice. (A game tree

will be drawn in class)

e The payoff for each player ¢ in the repeated game is given by the following formula.

(Payoff in the first game) + §; (Payoff in the second game)

0;: discount factor of player i, 0 < §; < 1. Payoff in the second game is worth §;
times the payoff in the first game.

e Another interpretation of §;: exogenously determined probability that the repeated

game continues. (At each repetition, the game then ends with probability 1 — §;.)
o A strategy for a player is given in the form

— Choose from {C, D} to play in the first prisoner’s dilemma game.

— For each outcome ((C,C), (C, D), (D,C),(D, D)), assign C or D. Essentially,
the second part of the strategy is a function from {C, D} x {C, D} to {C, D}.



— 2.2% =25 = 32 pure strategies for each player.

e The following fact can be checked directly.

In the twice-repeated prisoner’s dilemma, the following strategy taken by each player

is the unique subgame-perfect equilibrium:
e Play D first.

e Play D in the second game, regardless of what happens in the first game.

Informally, this strategy is described by the phrase, ”always play D.”

III. Finitely Repeated Games

o Let G = (N, (S:)ien, (ui)ien) be the component game or stage game, which
is to be repeated. It is assumed that within a repetition, each player ¢ chooses an

action in S; independently and simultaneously.

e At the end of each repetition, each player is informed of the choices made by the

other players.
e Concept of a strategy:

— For the twice repeated prisoner’s dilemma game — the decision node for player
1, when the game is played a second time, can be characterized by the sequence
of actions taken previously = history. Moreover, player 2’s information set in

the second repetition can also be characterized by the same history.

— History at time ¢, h?, is such that h* = (a',a?,--- ,a’~!) where for each 1 <
T<t—1,4a" €S :=][;cySi- h* := 0 denotes the “empty” history. Let H*
be the set of possible histories at the beginning of the t-th repetition. Here we
assume that this set is the same for all players since at the beginning of each
repetition, the information given to them is the same.

— A strategy for each i € N is given by the sequence o; = (7}, 01-2, -++) such that

for each ¢ > 2, ol : H' — S;. For ¢ = 1, for notational ease, let ol € S; for all
1€ N.

e Payoffs —

— Payoff function defined on terminal node.



— Each terminal node can be characterized by a sequence of action profiles —

Payoff defined on sequence of action profiles.

— Payoffs are discounted so that payoffs for player ¢ in the ¢-th repetition is worth
5;?_1 as much as payoffs in the 1st repetition, where 0 < §; < 1.

— Let (a',d?,--- ,a™) be a sequence of action profiles. Then, player i’s payoff

function Uj; in the T-repetitions of the game G is given by

T
Ui(a*,a?,--- ,a’) = Z 6, (at)
t=1

e The previous result for the prisoner’s dilemma can be generalized in the following

way.

Proposition 1. Let G be a strategic form game with a unique Nash equilibrium a™.
Then, the game G repeated T times, where T s a positive integer, has a unique
subgame-perfect equilibrium in which each player i plays a; each time, regardless of

what happens in the previous repetitions of G.

e In terms of the prisoner’s dilemma, as long as it is repeated a finite number of times,

the only subgame-perfect equilibrium is for each player to always choose D.
e Same result as in the original game

e Key assumptions:

— Unique Nash equilibrium in the stage game. (See Question 1 for when there

is more than one Nash equilibrium.)

— Finite repetition — different set of results for infinitely repeated games.
IV. Infinitely Repeated Games — Formal Definition

e Infinitely repeated game — approximation of a situation in which the end of the

game is not known for certain.
e The concept of strategy is defined in the same manner as the previous section.

e Need a new set of definitions because the length of the game is no longer finite —

no terminal nodes.



e Payoffs now defined on an infinite sequence of action profiles.

— Let (a',a?,---) be an infinite sequence of action profiles. Then, the payoffs in

the infinitely repeated game is given by

o0

Ui(at,a?,---) = Z 6y (ah)

t=1
— Because payoffs of an infinite stream may not seem intuitive, average payoffs
are used and is defined by

o

(1=6:)> 6 u(a)

t=1

e There are many subgame-perfect equilibria of an infinitely repeated game G, even
if G has only one Nash equilibrium — Folk Theorem (to be discussed in the next

section).

e To check subgame-perfect equilibrium — ”one-shot deviation principle” (in supple-

mentary material).
V. Folk Theorem

e Once again, consider the prisoner’s dilemma as an example. Consider the following

strategy, which is often called a trigger strategy:

— Choose C first.

— If at least one player chooses D at some t*, then choose D for t-th repetition,
where t > ¢t* + 1.

e The “trigger” refers to when someone (including the player himself/herself) chooses

D, from which point the player chooses D forever.

e Because one such deviation from C' initiates an unending punishment of taking D,

the strategy above is sometimes called the “grim trigger” strategy.

Fact 1. For §; sufficiently close to 1 for all i € N, the trigger strategy defined above
played by both players is a Nash equilibrium in the infinitely repeated prisoner’s

dilemma game.




e The above result is a special case of the “folk theorem.” To state the folk theorem,

define for each i € N the minimax value of the game G:

v; = min maxu;(S;, S_;).
S_;ES_; 8;€S;

e Below is a “classical” folk theorem

Theorem 1. Let G be a stage game, and let v; be the minimazx value of playeri € N.
Take any outcome a € [[;c Si such that u;(a) > v; for all i € N. Then, there erists
§ with 0 < 6 < 1 such that for all §; > &, there exists a Nash equilibrium o* such that
the average payoff for player i € N equals u;(a).

e Note above theorem stated in terms of Nash equilibrium — How about subgame-

perfect equilibrium?

Fact 2. For ¢; sufficiently close to 1 for all i € N, the trigger strategy defined above

is a subgame-perfect equilibrium in the infinitely repeated prisoner’s dilemma game.

e The above result is a special case of the following.

Proposition 2. Let G be a stage game and let a* be a Nash equilibrium of G. Let
a € [[;cn Si be an action profile such that u;(a) > u;(a*) for all i € N. Then, there
exists 6 € (0,1) such that for all §; > &, there exists a subgame-perfect equilibrium
with average payoff equal to u;(a) for each i € N.

e General results:

— Extend the results of Theorem 1 to any payoffs in the convex hull of possible

payoffs.

— Under the additional condition of full dimensionality of the above convex hull
or in the case of two players, Theorem 1 can be strengthened by replacing

“Nash equilibrium” with “subgame-perfect equilibrium.”



— The strategy used — a trigger strategy with two punishment stages.

VI. Other Topics and Literature

e Folk theorems listed here can be found in Fudenberg and Maskin (1986). Proposi-
tion 2 is from Friedman (1971).

e Optimal penal code and characterization of subgame-perfect equilibrium
— In Abreu (1988), a simplified concept of strategy is used to analyze subgame-

perfect equilibrium — (simple) penal code.

— The strategy prescribes what is to be taken initially, what is to be taken if

someone defects — strategy described through paths of actions.
— This technique is used to calculate the subgame-perfect equilibria of the in-

finitely repeated Cournot duopoly games in Abreu (1986).

e Renegotiation-proof equilibrium (Farrell and Maskin (1989), Bernheim and Ray
(1989))
— Players are allowed at each stage to renegotiate on the strategy being played.

— For example, once the trigger is implemented, would it be in the interest for
all players involved to follow the grim trigger strategy with this renegotiation

option.
e Imperfect monitoring

— To implement the trigger strategy, deviations need to be detected. In the folk

theorem, it is assumed that each player can detect a deviation once it occurs.

— A weakening of this assumption is that such monitoring is not perfect — devi-

ations may not be detected.

Each player receives a noisy signal about the actions of the others.

— Folk theorem in this case (Fudenberg, Levine, and Maskin (1994)), using se-

quential equilibria (the topic of next lecture).

e Payoffs: limy_, 7 ST ui(at) instead of discounting. (The folk theorem in this
case called ”The Aumann-Shapley/Rubinstein folk theorem” in Fudenberg and
Maskin (1986).)
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