
Potential Games (June 26, June 29)

I. Common Payoff Games

• Example

1 \ 2 L R

U 3, 3 0, 0

D 0, 0 1, 1

• There are two Nash equilibria: (U,L) and (D,R)

• Easier to find Nash equilibria of these games – one of which is a strategy combination

that yields the highest payoff to both players.

• Equilibrium can be found by solving a maximization problem

• However, (Nash equilibrium) = (Solution to maximization problem) may not hold

in general. (D,R) does not maximize the payoffs for either player but is still a Nash

equilibrium of the game in the example above.

• Goal of this lecture: look at a class of games in which a Nash equilibrium can be

found by maximization of a common function related to the payoffs of each player

→ ”common function” = potential function

• Games of such class → potential games

• Today’s topic (and the next two lectures that follow) typically not mentioned in

game theory textbooks

II. Exact Potential Games (Monderer and Shapley (1996)1)

• Potential games are games in strategic form that are in some way equivalent to a

game with common payoffs.

• The interpretation of the phrase “in some way” → many types of potential games.

1Monderer and Shapley (1996) attributes Rosenthal (1973) for the introduction of the concept of
potential in strategic form games in the class of what Rosenthal calls congestion games. However, the
term “potential” was not explicitly used in Rosenthal’s paper.
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A game G is an exact potential game or simply a potential game if there

exists a function P : S → R such that for each i ∈ N and si, s
′
i ∈ Si and

s−i ∈ S−i

ui(si, s−i)− ui(s
′
i, s−i) = P (si, s−i)− P (s′i, s−i)

The function P is said to be a potential function of the game G.

• A finite potential game always possesses a Nash equilibrium. Also, if each Si is

compact and ui a continuous function, such an exact potential game also possesses

a Nash equilibrium.

• Example – Prisoner’s dilemma (reproduced below)

1 \ 2 C D

C −2,−2 −6, 0

D 0,−6 −5,−5

• Prisoner’s dilemma game is a potential game. The potential function is summarized

in the following table.

1 \ 2 C D

C −3 −1

D −1 0

P (C,C) = −3, P (C,D) = P (D,C) = −1, P (D,D) = 0

• Note that the potential function is maximized at (D,D), which is a Nash equilibrium

in the original game.

• The prisoner’s dilemma is a counterexample to the following conjecture: ”A strategy

combination that maximizes the potential function is optimal for both players.”

• If for each i ∈ N , Si ⊂ R is an open set and ui is a continuously differentiable

function on
∏

i∈N Si ⊂ Rn, then the following is an equivalent condition for a game

to be a potential game.

• In the definition, let s′i = si + h for some h ∈ R with h ̸= 0. Then,

ui(si + h, s−i)− ui(si, s−i) = P (si + h, s−i)− P (si, s−i)
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Divide both sides by h and take the limit of h → 0.

Lemma 1. Let G be a game as described above with for each Si ⊂ R for each i ∈ N

and each ui is a continuously differentiable function on Rn. Then, the function P is

a potential function for the game G if and only if

∂ui
∂si

=
∂P

∂si

Theorem 1. Suppose in addition that each ui is twice continuously differentiable.

Then, a game G is a potential game if and only if

∂2ui
∂si∂sj

=
∂2uj
∂si∂sj

• Cournot duopoly (with negative prices) – Consider the Cournot duopoly game with

prices given simply by the formula, p(s1, s2) = a− (s1 + s2).

– The payoff of firm i (i = 1, 2) is given by

ui(s1, s2) = p(s1, s2)si − cisi

– The following is a potential function (as shown in Monderer and Shapley

(1996))

P (s1, s2) = a(s1 + s2)− (s21 + s22)− s1s2 − (c1s1 + c2s2)

III. Exact Potential Games=(Common Payoff Game)+(Dummy Game)

• A game G = (N, (Si)i∈N , (ui)i∈N ) is a dummy game if for each i ∈ N and

s−i ∈ S−i,

ui(si, s−i) = ui(s
′
i, s−i) ∀si, s′i ∈ Si

That is, ui does not depend on the strategy choice of player i. Therefore, ui is a

function of s−i only.

• Below is a result from Slade (1994), Facchini, van Megen, Borm, and Tijs (1997),

and Ui (2000) that gives an alternative characterization of an exact potential game.
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Proposition 1. A game G = (N, (Si, ui)i∈N ) is a potential game ⇔ there exist

functions P :
∏

i∈N Si → R and Qi : S−i → R for each i ∈ N such that for all

s ∈
∏

i∈N Si,

ui(s) = P (s) +Qi(s−i)

• The prisoner’s dilemma game can be obtained as the sum of the following two

games:

– First game – common payoff game with the payoffs given the potential function

given earlier

– Second game – dummy game,

1 \ 2 C D

C −3,−3 −1,−1

D −1,−1 0, 0

+

1 \ 2 C D

C 1, 1 −5, 1

D 1,−5 −5,−5

IV. Properties of Potential Games

• Uniqueness up to a constant

Proposition 2. If P and P ′ are potential functions corresponding to a potential

game G, then for each s ∈
∏

i∈N Si, P (s)− P ′(s) is a constant.

• For the prisoner’s dilemma, the following is also a potential function:

1 \ 2 C D

C 0 2

D 2 3

• Improving path

– A path is a (possibly infinite) collection of strategy profiles (y0, y1, · · · , yk, · · · )
such that for each k ≥ 1, there exists a unique player i(k) such that yk =
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(x, yk−1
−i(k)) for some x ∈ Si(k) and x ̸= yk−1

i(k) . y
k
−i(k) := (ykj )j ̸=i(k). That is, each

k, there exists a unique player i(k) that changes the strategy being played. All

other players choose the same strategy that is chosen in step k − 1.

– An improving path is a path (y0, y1, · · · , yk, · · · ) such that for each k and

the unique player i(k) defined above, ui(k)(y
k−1) < ui(k)(y

k).

– A game G has the finite improvement property (FIP) if for every im-

provement path is finite.

Fact 1. Suppose that a finite game G is a potential game. Then, the following

statements hold.

1. G satisfies FIP.

2. If γ is an improving path (which is finite) and y0 and yK are the initial

and terminal strategy profiles of γ, then P (y0) < P (yK).

• One characterization using the concept of closed paths.

– Let γ be a finite path γ = (y0, y1, · · · , yK). Define I(γ) to be

I(γ) =

K−1∑
k=0

(
ui(k+1)(y

k+1)− ui(k+1)(y
k)
)

– That is, I(γ) represents the total change in payoffs from the path γ.

– A path γ = (y0, y1, · · · , yK) is said to be closed if y0 = yK .

– A path γ = (y0, y1, · · · , yK) is a simple closed path if it is closed and for

every 0 ≤ l ̸= k ≤ K − 1, yl ̸= yk.

– The length of a simple closed path γ = (y0, y1, · · · , yK) is the number of

distinct strategy profiles. In this case, the length of γ is K.

Theorem 2. The following are equivalent.

1. Game G is a potential game.

2. For every closed path γ, I(γ) = 0.
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3. For every simple closed path γ, I(γ) = 0.

4. For every simple closed path γ of length 4, I(γ) = 0.

• Hino (2011) gives a (computationally) simpler equivalent condition of condition 4

in the previous theorem.

V. Weaker Notions of Potential Functions

• Other potential games in Monderer and Shapley (1996):

A game G is a weighted potential game if there exists a function P : S → R
and a positive weight vector (wi)i∈N such that for each i ∈ N and si, s

′
i ∈ Si

and s−i ∈ S−i

ui(si, s−i)− ui(s
′
i, s−i) = wi(P (si, s−i)− P (s′i, s−i))

A game G is an ordinal potential game if there exists a function P : S → R
such that for each i ∈ N and si, s

′
i ∈ Si and s−i ∈ S−i

ui(si, s−i)− ui(s
′
i, s−i) > 0 ⇔ P (si, s−i)− P (s′i, s−i) > 0

• The next set of potential games are defined using the best response correspondence

βi for each player i ∈ N . The best response potential is defined in Voorneveld

(2000), and the pseudo potential is defined in Dubey, Haimanko, and Zapechelnyuk

(2006).

A game G is a best-response potential game if there exists a function

P : S → R such that for each i ∈ N and s−i ∈ S−i

βi(s−i) = arg max
si∈Si

P (si, s−i)
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A game G is a pseudo potential game if there exists a function P : S → R
such that for each i ∈ N and s−i ∈ S−i

βi(s−i) ⊇ arg max
si∈Si

P (si, s−i)

where argmaxsi∈Si P (si, s−i) = {s∗i ∈ Si : P (s∗i , s−i) ≥ P (s′i, s−i) ∀s′i ∈ Si}

• Some facts regarding these potential games:

– The relationship among these potential games: Exact potential game⇒Weighted

potential game ⇒ Ordinal potential game ⇒ Best-reponse potential game ⇒
Pseudo potential game

– Let P be a best-response potential and consider a game G′ = (N, (Si)i∈N , P )

where each player’s payoff function in G′ is the same function P . Then s∗ is a

Nash equilibrium of G′ ⇔ s∗ is a Nash equilibrium of G.

– Let P be a pseudo potential of a game G. If s∗ maximizes P , then s∗ is a

Nash equilibrium.

• Further potential games: iterated potential (Oyama and Tercieux (2009)), nested

potential (Uno (2007)).

VI. Applications

• Techniques used in providing an alternative pricing scheme for economies with

externalities → Sandholm (2002), Sandholm (2005), Sandholm (2007)

• The maximizer of the potential function is a Nash equilibrium that is robust to

small changes in information as defined in Kajii and Morris (1997) (Ui (2001))

• Voting (Yamamura and Kawasaki (2013))

• Broadcast games (Kawase and Makino (2013))

• Spatial economics (Oyama (2009), Fujishima (2013))

• Control (Marden, Arslan, and Shamma (2009), Wasa, Hatanaka, and Fujita (2014))

7



References

Dubey, P., O. Haimanko, and A. Zapechelnyuk (2006). Strategic complements and sub-

stitutes, and potential games. Games and Economic Behavior 54, 77–94.

Facchini, G., F. van Megen, P. Borm, and S. Tijs (1997). Congestion models and weighted

Bayesian potential games. Theory and Decision 42, 193–206.

Fujishima, S. (2013). Evolutionary implementation of optimal city size distributions.

Regional Science and Urban Economics 43, 404–410.

Hino, Y. (2011). An improved algorithm for detecting potential games. International

Journal of Game Theory 40, 199–205.

Kajii, A. and S. Morris (1997). The robustness of equilibria to incomplete information.

Econometrica 65, 1283–1310.

Kawase, Y. and K. Makino (2013). Nash equilibria with minimum potential in undirected

broadcast games. Theoretical Computer Science 482, 33–47.

Marden, J. R., G. Arslan, and J. S. Shamma (2009). Cooperative control and potential

games. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics) 39 (6), 1393–1407.

Monderer, D. and L. S. Shapley (1996). Potential games. Games and Economic Behav-

ior 14, 124–143.

Oyama, D. (2009). Agglomeration under forward-looking expectations: Potentials and

global stability. Regional Science and Urban Economics 39, 696–713.

Oyama, D. and O. Tercieux (2009). Iterated potential and robustness of equilibria.

Journal of Economic Theory 144, 1726–1769.

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory 2, 65–67.

Sandholm, W. (2002). Evolutionary implementation and congestion pricing. Review of

Economic Studies 69, 667–689.

Sandholm, W. (2005). Negative externalities and evolutionary implementation. Review

of Economic Studies 72, 885–915.

8



Sandholm, W. (2007). Pigouvian pricing and stochastic evolutionary implementation.

Journal of Economic Theory 132, 367–382.

Slade, M. (1994). What does an oligopolist maximize? Journal of Industrial Eco-

nomics 42, 45–61.

Ui, T. (2000). A Shapley value representation of potential games. Games and Economic

Behavior 31, 121–135.

Ui, T. (2001). Robust equilibria of potential games. Econometrica 69, 1373–1380.

Uno, H. (2007). Nested potential games. Economics Bulletin 3, 1–8.

Voorneveld, M. (2000). Best-response potential games. Economics Letters 66, 289–295.

Wasa, Y., T. Hatanaka, and M. Fujita (2014). Application of irrational decisions to

simple experimentation to guarantee welfare maximization. SICE Journal of Control,

Measurement, and System Integration 7 (4), 199–204.

Yamamura, H. and R. Kawasaki (2013). Generalized average rules as stable Nash mecha-

nisms to implement generalized median rules. Social Choice and Welfare 40, 815–832.

9


