Potential Games (June 26, June 29)

- I. Common Payoff Games
 - Example

$1 \setminus 2$	L	R
U	3, 3	0, 0
D	0,0	1, 1

- There are two Nash equilibria: (U, L) and (D, R)
- Easier to find Nash equilibria of these games one of which is a strategy combination that yields the highest payoff to both players.
- Equilibrium can be found by solving a *maximization* problem
- However, (Nash equilibrium) = (Solution to maximization problem) may not hold in general. (D, R) does not maximize the payoffs for either player but is still a Nash equilibrium of the game in the example above.
- Goal of this lecture: look at a class of games in which a Nash equilibrium can be found by maximization of a common function related to the payoffs of each player → "common function" = potential function
- Games of such class \rightarrow potential games
- Today's topic (and the next two lectures that follow) typically not mentioned in game theory textbooks

II. Exact Potential Games (Monderer and Shapley $(1996)^1$)

- Potential games are games in strategic form that are in some way equivalent to a game with common payoffs.
- The interpretation of the phrase "in some way" \rightarrow many types of potential games.

¹Monderer and Shapley (1996) attributes Rosenthal (1973) for the introduction of the concept of potential in strategic form games in the class of what Rosenthal calls *congestion games*. However, the term "potential" was not explicitly used in Rosenthal's paper.

A game G is an exact potential game or simply a potential game if there exists a function $P: S \to \mathbb{R}$ such that for each $i \in N$ and $s_i, s'_i \in S_i$ and $s_{-i} \in S_{-i}$

$$u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i}) = P(s_i, s_{-i}) - P(s'_i, s_{-i})$$

The function P is said to be a **potential function** of the game G.

- A finite potential game always possesses a Nash equilibrium. Also, if each S_i is compact and u_i a continuous function, such an exact potential game also possesses a Nash equilibrium.
- Example Prisoner's dilemma (reproduced below)

$1 \setminus 2$	C	D
C	-2, -2	-6, 0
D	0, -6	-5, -5

• Prisoner's dilemma game is a potential game. The potential function is summarized in the following table.

$1 \setminus 2$	C	D
C	-3	-1
D	-1	0

$$P(C,C) = -3, P(C,D) = P(D,C) = -1, P(D,D) = 0$$

- Note that the potential function is maximized at (D, D), which is a Nash equilibrium in the original game.
- The prisoner's dilemma is a <u>counterexample</u> to the following conjecture: "A strategy combination that maximizes the potential function is optimal for both players."
- If for each $i \in N$, $S_i \subset \mathbb{R}$ is an open set and u_i is a continuously differentiable function on $\prod_{i \in N} S_i \subset \mathbb{R}^n$, then the following is an equivalent condition for a game to be a potential game.
- In the definition, let $s'_i = s_i + h$ for some $h \in \mathbb{R}$ with $h \neq 0$. Then,

$$u_i(s_i + h, s_{-i}) - u_i(s_i, s_{-i}) = P(s_i + h, s_{-i}) - P(s_i, s_{-i})$$

Divide both sides by h and take the limit of $h \to 0$.

Lemma 1. Let G be a game as described above with for each $S_i \subset \mathbb{R}$ for each $i \in N$ and each u_i is a continuously differentiable function on \mathbb{R}^n . Then, the function P is a potential function for the game G if and only if

$$\frac{\partial u_i}{\partial s_i} = \frac{\partial P}{\partial s_i}$$

Theorem 1. Suppose in addition that each u_i is twice continuously differentiable. Then, a game G is a potential game if and only if

$$\frac{\partial^2 u_i}{\partial s_i \partial s_j} = \frac{\partial^2 u_j}{\partial s_i \partial s_j}$$

- Cournot duopoly (with negative prices) Consider the Cournot duopoly game with prices given simply by the formula, $p(s_1, s_2) = a (s_1 + s_2)$.
 - The payoff of firm i (i = 1, 2) is given by

$$u_i(s_1, s_2) = p(s_1, s_2)s_i - c_i s_i$$

The following is a potential function (as shown in Monderer and Shapley (1996))

$$P(s_1, s_2) = a(s_1 + s_2) - (s_1^2 + s_2^2) - s_1 s_2 - (c_1 s_1 + c_2 s_2)$$

III. Exact Potential Games=(Common Payoff Game)+(Dummy Game)

• A game $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ is a **dummy game** if for each $i \in N$ and $s_{-i} \in S_{-i}$,

$$u_i(s_i, s_{-i}) = u_i(s'_i, s_{-i}) \ \forall s_i, s'_i \in S_i$$

That is, u_i does not depend on the strategy choice of player *i*. Therefore, u_i is a function of s_{-i} only.

• Below is a result from Slade (1994), Facchini, van Megen, Borm, and Tijs (1997), and Ui (2000) that gives an alternative characterization of an exact potential game.

Proposition 1. A game $G = (N, (S_i, u_i)_{i \in N})$ is a potential game \Leftrightarrow there exist functions $P : \prod_{i \in N} S_i \to \mathbb{R}$ and $Q_i : S_{-i} \to \mathbb{R}$ for each $i \in N$ such that for all $s \in \prod_{i \in N} S_i$,

$$u_i(s) = P(s) + Q_i(s_{-i})$$

- The prisoner's dilemma game can be obtained as the sum of the following two games:
 - First game common payoff game with the payoffs given the potential function given earlier
 - Second game dummy game,

$1 \setminus 2$	C	D		$1 \setminus 2$	C	D
C	-3, -3	-1, -1	+	C	1, 1	-5, 1
D	-1, -1	0, 0		D	1, -5	-5, -5

- IV. Properties of Potential Games
 - Uniqueness up to a constant

Proposition 2. If P and P' are potential functions corresponding to a potential game G, then for each $s \in \prod_{i \in N} S_i$, P(s) - P'(s) is a constant.

• For the prisoner's dilemma, the following is also a potential function:

$1 \setminus 2$	C	D
C	0	2
D	2	3

- Improving path
 - A **path** is a (possibly infinite) collection of strategy profiles $(y^0, y^1, \dots, y^k, \dots)$ such that for each $k \ge 1$, there exists a unique player i(k) such that $y^k =$

 $(x, y_{-i(k)}^{k-1})$ for some $x \in S_{i(k)}$ and $x \neq y_{i(k)}^{k-1}$. $y_{-i(k)}^k := (y_j^k)_{j \neq i(k)}$. That is, each k, there exists a unique player i(k) that changes the strategy being played. All other players choose the same strategy that is chosen in step k - 1.

- An **improving path** is a path $(y^0, y^1, \dots, y^k, \dots)$ such that for each k and the <u>unique</u> player i(k) defined above, $u_{i(k)}(y^{k-1}) < u_{i(k)}(y^k)$.
- A game G has the **finite improvement property (FIP)** if for every improvement path is finite.

Fact 1. Suppose that a finite game G is a potential game. Then, the following statements hold.

- 1. G satisfies FIP.
- 2. If γ is an improving path (which is finite) and y^0 and y^K are the initial and terminal strategy profiles of γ , then $P(y^0) < P(y^K)$.
- One characterization using the concept of closed paths.
 - Let γ be a finite path $\gamma = (y^0, y^1, \cdots, y^K)$. Define $I(\gamma)$ to be

$$I(\gamma) = \sum_{k=0}^{K-1} \left(u_{i(k+1)}(y^{k+1}) - u_{i(k+1)}(y^k) \right)$$

- That is, $I(\gamma)$ represents the total change in payoffs from the path γ .
- A path $\gamma = (y^0, y^1, \cdots, y^K)$ is said to be **closed** if $y^0 = y^K$.
- A path $\gamma = (y^0, y^1, \dots, y^K)$ is a **simple closed path** if it is closed and for every $0 \le l \ne k \le K 1$, $y^l \ne y^k$.
- The **length** of a simple closed path $\gamma = (y^0, y^1, \dots, y^K)$ is the number of distinct strategy profiles. In this case, the length of γ is K.

Theorem 2. The following are equivalent.

- 1. Game G is a potential game.
- 2. For every closed path γ , $I(\gamma) = 0$.

- 3. For every simple closed path γ , $I(\gamma) = 0$.
- 4. For every simple closed path γ of length 4, $I(\gamma) = 0$.
- Hino (2011) gives a (computationally) simpler equivalent condition of condition 4 in the previous theorem.
- V. Weaker Notions of Potential Functions
 - Other potential games in Monderer and Shapley (1996):

A game G is a weighted potential game if there exists a function $P: S \to \mathbb{R}$ and a positive weight vector $(w_i)_{i \in N}$ such that for each $i \in N$ and $s_i, s'_i \in S_i$ and $s_{-i} \in S_{-i}$

$$u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i}) = w_i(P(s_i, s_{-i}) - P(s'_i, s_{-i}))$$

A game G is an **ordinal potential game** if there exists a function $P: S \to \mathbb{R}$ such that for each $i \in N$ and $s_i, s'_i \in S_i$ and $s_{-i} \in S_{-i}$

$$u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i}) > 0 \iff P(s_i, s_{-i}) - P(s'_i, s_{-i}) > 0$$

• The next set of potential games are defined using the best response correspondence β_i for each player $i \in N$. The best response potential is defined in Voorneveld (2000), and the pseudo potential is defined in Dubey, Haimanko, and Zapechelnyuk (2006).

A game G is a **best-response potential game** if there exists a function $P: S \to \mathbb{R}$ such that for each $i \in N$ and $s_{-i} \in S_{-i}$

$$\beta_i(s_{-i}) = \arg\max_{s_i \in S_i} P(s_i, s_{-i})$$

A game G is a **pseudo potential game** if there exists a function $P: S \to \mathbb{R}$ such that for each $i \in N$ and $s_{-i} \in S_{-i}$

$$\beta_i(s_{-i}) \supseteq \arg \max_{s_i \in S_i} P(s_i, s_{-i})$$

where $\arg \max_{s_i \in S_i} P(s_i, s_{-i}) = \{s_i^* \in S_i : P(s_i^*, s_{-i}) \ge P(s_i', s_{-i}) \ \forall s_i' \in S_i\}$

- Some facts regarding these potential games:
 - The relationship among these potential games: Exact potential game ⇒ Weighted potential game ⇒ Ordinal potential game ⇒ Best-reponse potential game ⇒
 - Let P be a best-response potential and consider a game $G' = (N, (S_i)_{i \in N}, P)$ where each player's payoff function in G' is the same function P. Then s^* is a Nash equilibrium of $G' \Leftrightarrow s^*$ is a Nash equilibrium of G.
 - Let P be a pseudo potential of a game G. If s^* maximizes P, then s^* is a Nash equilibrium.
- Further potential games: iterated potential (Oyama and Tercieux (2009)), nested potential (Uno (2007)).

VI. Applications

- Techniques used in providing an alternative pricing scheme for economies with externalities \rightarrow Sandholm (2002), Sandholm (2005), Sandholm (2007)
- The maximizer of the potential function is a Nash equilibrium that is robust to small changes in information as defined in Kajii and Morris (1997) (Ui (2001))
- Voting (Yamamura and Kawasaki (2013))
- Broadcast games (Kawase and Makino (2013))
- Spatial economics (Oyama (2009), Fujishima (2013))
- Control (Marden, Arslan, and Shamma (2009), Wasa, Hatanaka, and Fujita (2014))

References

- Dubey, P., O. Haimanko, and A. Zapechelnyuk (2006). Strategic complements and substitutes, and potential games. *Games and Economic Behavior* 54, 77–94.
- Facchini, G., F. van Megen, P. Borm, and S. Tijs (1997). Congestion models and weighted Bayesian potential games. *Theory and Decision* 42, 193–206.
- Fujishima, S. (2013). Evolutionary implementation of optimal city size distributions. Regional Science and Urban Economics 43, 404–410.
- Hino, Y. (2011). An improved algorithm for detecting potential games. International Journal of Game Theory 40, 199–205.
- Kajii, A. and S. Morris (1997). The robustness of equilibria to incomplete information. *Econometrica* 65, 1283–1310.
- Kawase, Y. and K. Makino (2013). Nash equilibria with minimum potential in undirected broadcast games. *Theoretical Computer Science* 482, 33–47.
- Marden, J. R., G. Arslan, and J. S. Shamma (2009). Cooperative control and potential games. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)* 39(6), 1393–1407.
- Monderer, D. and L. S. Shapley (1996). Potential games. Games and Economic Behavior 14, 124–143.
- Oyama, D. (2009). Agglomeration under forward-looking expectations: Potentials and global stability. *Regional Science and Urban Economics* 39, 696–713.
- Oyama, D. and O. Tercieux (2009). Iterated potential and robustness of equilibria. Journal of Economic Theory 144, 1726–1769.
- Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67.
- Sandholm, W. (2002). Evolutionary implementation and congestion pricing. Review of Economic Studies 69, 667–689.
- Sandholm, W. (2005). Negative externalities and evolutionary implementation. Review of Economic Studies 72, 885–915.

- Sandholm, W. (2007). Pigouvian pricing and stochastic evolutionary implementation. Journal of Economic Theory 132, 367–382.
- Slade, M. (1994). What does an oligopolist maximize? Journal of Industrial Economics 42, 45–61.
- Ui, T. (2000). A Shapley value representation of potential games. Games and Economic Behavior 31, 121–135.
- Ui, T. (2001). Robust equilibria of potential games. *Econometrica* 69, 1373–1380.
- Uno, H. (2007). Nested potential games. *Economics Bulletin 3*, 1–8.
- Voorneveld, M. (2000). Best-response potential games. Economics Letters 66, 289–295.
- Wasa, Y., T. Hatanaka, and M. Fujita (2014). Application of irrational decisions to simple experimentation to guarantee welfare maximization. SICE Journal of Control, Measurement, and System Integration 7(4), 199–204.
- Yamamura, H. and R. Kawasaki (2013). Generalized average rules as stable Nash mechanisms to implement generalized median rules. Social Choice and Welfare 40, 815–832.