Games in Strategic Form (June 12)

I. Definition of a Game

- "Game theory can be defined as the study of mathematical models of conflict and cooperation between intelligent rational decision-makers. Game theory provides general mathematical techniques for analyzing situations in which two or more individuals make decisions that will influence one another's welfare." ${ }^{1}$

A game in strategic form is given by $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ where

- $N=\{1,2, \cdots, n\}:$ the set of players
- S_{i} : the set of strategies of player $i \in N$
- $u_{i}: \prod_{i \in N} S_{i} \rightarrow \mathbb{R}$: payoff function of player $i \in N$
- Notation and Terminology:
$-\mathbb{R}$: set of real numbers
$-S:=\prod_{i \in N} S_{i}=S_{1} \times S_{2} \times \cdots S_{n}=\left\{\left(s_{1}, s_{2}, \cdots, s_{n}\right) \mid s_{1} \in S_{1}, \cdots, s_{n} \in S_{n}\right\}$
- An element $s:=\left(s_{1}, s_{2}, \cdots, s_{n}\right) \in S$ is sometimes called a strategy profile or simply an outcome of the game G.
- Assumptions: Each player $i \in N$ chooses some strategy $s_{i} \in S_{i}$
- independently - no communication among players \rightarrow noncooperative
- simultaneously - no advanced knowledge of the strategies chosen by other players

II. Examples of Games in Strategic Form

- Rock, Paper, and Scissors
- $N=\{1,2\}$ (2 players, called player 1 and player 2)
$-S_{1}=S_{2}=\{R, P a, S c\}$ where R denotes "Rock," Pa denotes "Paper," and $S c$ denotes "Scissors"

[^0]- Payoff functions for the 2 players are defined as follows

$$
\begin{gathered}
u_{1}(R, R)=0, u_{1}(R, P a)=-1, u_{1}(R, S c)=1 \\
u_{1}(P a, R)=1, u_{1}(P a, P a)=0, u_{1}(P a, S c)=-1 \\
u_{1}(S c, R)=-1, u_{1}(S c, P)=1, u_{1}(S c, S c)=0
\end{gathered}
$$

and

$$
\begin{gathered}
u_{2}(R, R)=0, u_{2}(R, P a)=1, u_{2}(R, S c)=-1 \\
u_{2}(P a, R)=-1, u_{2}(P a, P a)=0, u_{2}(P a, S c)=1 \\
u_{2}(S c, R)=1, u_{2}(S c, P a)=-1, u_{2}(S c, S c)=0
\end{gathered}
$$

- Cournot Duopoly
- $N=\{1,2\}$ (2 players who are called in this setting as firm 1 and firm 2)
- $S_{1}=S_{2}=[0, \infty)$: production level of each firm (strategy sets can be infinite and unbounded)

$$
\begin{aligned}
& u_{1}\left(s_{1}, s_{2}\right)=p\left(s_{1}, s_{2}\right) s_{1}-c_{1} s_{1} \\
& u_{2}\left(s_{1}, s_{2}\right)=p\left(s_{1}, s_{2}\right) s_{2}-c_{2} s_{2}
\end{aligned}
$$

where
$-p\left(s_{1}, s_{2}\right)=\max \left\{0, a-\left(s_{1}+s_{2}\right)\right\}$ denotes the inverse demand function giving the price of the output when firm 1 produces the amount s_{1} and firm 2 produces the amount s_{2}.
$-c_{i}$: cost per unit production for firm i, assumed to be a positive constant.

III. Formulation using a Matrix and Further Examples

- Rock, paper, and scissors

	R	Pa	Sc
R	0,0	$-1,1$	$1,-1$
Pa	$1,-1$	0,0	$-1,1$
Sc	$-1,1$	$1,-1$	0,0

- Convention
- Player 1 chooses rows, Player 2 chooses columns.
- The entries represent payoffs in the following form: (player 1's payoff, player 2's payoffs).
- From this point forward, player 1 and player 2 will not be color-coded as in the example above.
- A similar convention applies when the players are called player A and player B so that player A chooses rows and player B chooses columns, and etc.
- Prisoner's dilemma
- Two people A and B whom the police thinks have committed a crime.
* If neither A nor B confesses: A and B spend 2 years in jail
* If A confesses, B does not: A is set free, B spends 6 years in jail
* If A does not confess, B confesses: A spends 6 years in jail, B is set free
* If A and B confess: A and B spend 5 years in jail
$-N=\{A, B\}$
- Typical Notation: "Not confess" $\rightarrow C$ (for "Cooperate") and "Confess" $\rightarrow D$ (for "Defect"). $S_{A}=S_{B}=\{C, D\}$.
- Define payoffs $=-($ time spent in jail $)$. For example, $u_{A}(C, C)=-2$.
- The game can be expressed in the following form, were player A chooses rows and player B chooses columns:

$A \backslash B$	C	D
C	$-2,-2$	$-6,0$
D	$0,-6$	$-5,-5$

- Chicken game
- Players A and B drive in separate cars, driving towards each other.
- Each player chooses whether to turn (C) or to not turn (D)
* If both A and B turn: A and B do not crash, payoff of zero
* If A turns and B does not turn: no crash, A is embarassed and B feels brave
* If A does not turn, and B turns: no crash, A brave, and B embarassed
* If A and B do not turn: crash
- Let the payoff associated to being embarassed be -2 , feeling brave is 2 , and crashing is -5 .

$A \backslash B$	C	D
C	0,0	$-2,2$
D	$2,-2$	$-5,-5$

IV. Mixed Extension of a Game in Strategic Form

Let $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ be a game in strategic form where S_{i} is a finite set for each $i \in N$.

- Each element in S_{i} is called a pure strategy of player i.
- A mixed strategy of player i is a function $\sigma_{i}: S_{i} \rightarrow \mathbb{R}$ such that
$-\sigma_{i}\left(s_{i}\right) \geq 0$ for all $s_{i} \in S_{i}$
$-\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1$
where $\sigma_{i}\left(s_{i}\right)$ indicates the probability that player i plays the strategy s_{i}.
- $\Delta\left(S_{i}\right)$: the set of mixed strategies of player $i \in N$. (to be explained in further detail)
- Let $\sigma=\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right) \in \prod_{i \in N} \Delta\left(S_{i}\right)$. Under the assumption that players choose their mixed strategies independently, the probability that player 1 plays strategy s_{1}, player 2 plays s_{2}, \cdots, player n plays s_{n} is given by

$$
\sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)=\prod_{i \in N} \sigma_{i}\left(s_{i}\right)
$$

- The expected payoff when each player i chooses a mixed strategy σ_{i} is given by

$$
\pi_{i}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)=\sum_{\left(s_{1}, s_{2}, \cdots, s_{n}\right) \in S}\left(\prod_{i \in N} \sigma_{i}\left(s_{i}\right)\right) u_{i}\left(s_{1}, s_{2}, \cdots, s_{n}\right)
$$

where $S:=\prod_{i \in N} S_{i}$.

- $\left(N,\left(\Delta\left(S_{i}\right)\right)_{i \in N},\left(\pi_{i}\right)_{i \in N}\right)$ defines a strategic form game and is called the mixed extension of the game $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$.

References

Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Cambridge: Harvard University Press.

[^0]: ${ }^{1}$ These are the opening sentences of Myerson (1991).

