Games in Strategic Form (June 12)

- I. Definition of a Game
 - "Game theory can be defined as the study of mathematical models of conflict and cooperation between intelligent rational decision-makers. Game theory provides general mathematical techniques for analyzing situations in which two or more individuals make decisions that will influence one another's welfare."¹

A game in strategic form is given by $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ where

- $N = \{1, 2, \cdots, n\}$: the set of players
- S_i : the set of strategies of player $i \in N$
- $u_i: \prod_{i \in N} S_i \to \mathbb{R}$: payoff function of player $i \in N$
- Notation and Terminology:
 - \mathbb{R} : set of real numbers
 - $S := \prod_{i \in N} S_i = S_1 \times S_2 \times \cdots \times S_n = \{(s_1, s_2, \cdots, s_n) | s_1 \in S_1, \cdots, s_n \in S_n\}$
 - An element $s := (s_1, s_2, \dots, s_n) \in S$ is sometimes called a **strategy profile** or simply an **outcome** of the game G.
- Assumptions: Each player $i \in N$ chooses some strategy $s_i \in S_i$
 - independently no communication among players \rightarrow noncooperative
 - simultaneously no advanced knowledge of the strategies chosen by other players
- II. Examples of Games in Strategic Form
 - Rock, Paper, and Scissors
 - $N = \{1, 2\}$ (2 players, called player 1 and player 2)
 - $S_1 = S_2 = \{R, Pa, Sc\}$ where R denotes "Rock," Pa denotes "Paper," and Sc denotes "Scissors"

¹These are the opening sentences of Myerson (1991).

- Payoff functions for the 2 players are defined as follows

$$u_1(R, R) = 0, u_1(R, Pa) = -1, u_1(R, Sc) = 1$$
$$u_1(Pa, R) = 1, u_1(Pa, Pa) = 0, u_1(Pa, Sc) = -1$$
$$u_1(Sc, R) = -1, u_1(Sc, P) = 1, u_1(Sc, Sc) = 0$$

and

$$u_2(R, R) = 0, u_2(R, Pa) = 1, u_2(R, Sc) = -1$$
$$u_2(Pa, R) = -1, u_2(Pa, Pa) = 0, u_2(Pa, Sc) = 1$$
$$u_2(Sc, R) = 1, u_2(Sc, Pa) = -1, u_2(Sc, Sc) = 0$$

- Cournot Duopoly
 - $N = \{1, 2\}$ (2 players who are called in this setting as firm 1 and firm 2)
 - $-S_1 = S_2 = [0, \infty)$: production level of each firm (strategy sets can be infinite and unbounded)

$$u_1(s_1, s_2) = p(s_1, s_2)s_1 - c_1s_1$$
$$u_2(s_1, s_2) = p(s_1, s_2)s_2 - c_2s_2$$

where

- $-p(s_1, s_2) = \max\{0, a (s_1 + s_2)\}$ denotes the inverse demand function giving the price of the output when firm 1 produces the amount s_1 and firm 2 produces the amount s_2 .
- $-c_i$: cost per unit production for firm *i*, assumed to be a positive constant.

III. Formulation using a Matrix and Further Examples

• Rock, paper, and scissors

	R	Pa	Sc
R	<mark>0,0</mark>	-1, 1	1, -1
Pa	1, -1	0,0	-1, 1
\mathbf{Sc}	-1, 1	1, -1	0,0

- <u>Convention</u>
 - Player 1 chooses <u>rows</u>, Player 2 chooses <u>columns</u>.

- The entries represent payoffs in the following form: (player 1's payoff, player 2's payoffs).
- From this point forward, player 1 and player 2 will not be color-coded as in the example above.
- A similar convention applies when the players are called player A and player
 B so that player A chooses rows and player B chooses columns, and etc.
- Prisoner's dilemma
 - Two people A and B whom the police thinks have committed a crime.
 - * If neither A nor B confesses: A and B spend 2 years in jail
 - $\ast\,$ If A confesses, B does not: A is set free, B spends 6 years in jail
 - * If A does not confess, B confesses: A spends 6 years in jail, B is set free
 - * If A and B confess: A and B spend 5 years in jail
 - $N = \{A, B\}$
 - Typical Notation: "Not confess" $\rightarrow C$ (for "Cooperate") and "Confess" $\rightarrow D$ (for "Defect"). $S_A = S_B = \{C, D\}.$
 - Define payoffs = -(time spent in jail). For example, $u_A(C, C) = -2$.
 - The game can be expressed in the following form, were player A chooses rows and player B chooses columns:

$A \setminus B$	C	D
C	-2, -2	-6, 0
D	0, -6	-5, -5

- Chicken game
 - Players A and B drive in separate cars, driving towards each other.
 - Each player chooses whether to turn (C) or to not turn (D)
 - * If both A and B turn: A and B do not crash, payoff of zero
 - * <u>If A turns and B does not turn</u>: no crash, A is embarassed and B feels brave
 - * If A does not turn, and B turns: no crash, A brave, and B embarassed
 - * If A and B do not turn: crash
 - Let the payoff associated to being embarassed be -2, feeling brave is 2, and crashing is -5.

$A \setminus B$	C	D
C	0, 0	-2, 2
D	2, -2	-5, -5

IV. Mixed Extension of a Game in Strategic Form

Let $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a game in strategic form where S_i is a finite set for each $i \in N$.

- Each element in S_i is called a **pure strategy** of player *i*.
- A mixed strategy of player *i* is a function $\sigma_i : S_i \to \mathbb{R}$ such that

$$- \sigma_i(s_i) \ge 0 \text{ for all } s_i \in S_i$$
$$- \sum_{s_i \in S_i} \sigma_i(s_i) = 1$$

where $\sigma_i(s_i)$ indicates the probability that player *i* plays the strategy s_i .

- $\Delta(S_i)$: the set of mixed strategies of player $i \in N$. (to be explained in further detail)
- Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n) \in \prod_{i \in N} \Delta(S_i)$. Under the assumption that players choose their mixed strategies independently, the probability that player 1 plays strategy s_1 , player 2 plays s_2, \dots , player n plays s_n is given by

$$\sigma_1(s_1)\sigma_2(s_2)\cdots\sigma_n(s_n) = \prod_{i\in N}\sigma_i(s_i)$$

• The expected payoff when each player *i* chooses a mixed strategy σ_i is given by

$$\pi_i(\sigma_1, \sigma_2, \cdots, \sigma_n) = \sum_{(s_1, s_2, \cdots, s_n) \in S} \left(\prod_{i \in N} \sigma_i(s_i) \right) u_i(s_1, s_2, \cdots, s_n)$$

where $S := \prod_{i \in N} S_i$.

(N, (Δ(S_i))_{i∈N}, (π_i)_{i∈N}) defines a strategic form game and is called the mixed extension of the game G = (N, (S_i)_{i∈N}, (u_i)_{i∈N}).

References

Myerson, R. B. (1991). *Game Theory: Analysis of Conflict.* Cambridge: Harvard University Press.