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Answers to Previous Exercises

1. Let N = 5 × 7 and x = 8. Compute r = ord(x,N).
r = 4.
2. Tell whether or not xr/2 mod N , N − 1.
82 mod 35 = 29 , 34.
3. Tell whether either gcd(xr/2 − 1 mod N, N) or gcd(xr/2 + 1 mod N, N) is a
factor of N or not.
Yes, thay are factors. Explain how to compute the gcd by the Euclidean
algorithm.
The final report will be similar to Q4–6. 4. Compute |us⟩ with above values
and s = 1.

1
√

4

3∑
k=0

exp(−πi
k
2

)|8k mod 35⟩ =
1
2

(|1⟩−i|8⟩ + (−1)|29⟩+i|22⟩)
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5. Let U be as defined in the lecture. With above x and N, what is the
eigenvalue of U to which |u1⟩ belongs?
exp(πi/2) = i.
6. Suppose that we execute the phase estimation procedure with the above U
and 1√

r

∑r−1
s=0 |us⟩ with t = 4 qubits for recording the value of a phase s/r.

There are 2t = 16 possible outcomes. Plot those 16 probabilities and observe
that outcomes corresponding to s/r for s = 0, . . . , r − 1 have higher
probabilities than the rest.
Read the hint given in the last unit. The quantum state immediately before the
measurement in the phase estimation is∑

s,s′
|vs⟩⟨vs′ | ⊗

1
r
|us⟩⟨us′ |,

whose partial trace is∑
s,s′
|vs⟩⟨vs′ |

1
r

Tr[|us⟩⟨us′ |]︸        ︷︷        ︸
=δs,s′

=
1
r

r−1∑
s=0

|vs⟩⟨vs|,

which is the equal probabilistic mixture of |v0⟩, . . . , |vr−1⟩.
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Therefore, the probability of getting measurement outcome ℓ is 1
r
∑r−1

s=0 |αs,ℓ|
2,

where |vs⟩ = αs,0|0⟩ + αs,1|1⟩ + · · · + αs,2t−1|2t − 1⟩, and

αs,ℓ =
1
2t

2t−1∑
k=0

[exp
(
2πi(θ − ℓ/2t)

)
]k(by using Unit 9)

=
1

16

15∑
k=0

[exp (2πi(s/4 − ℓ/16))]k

ℓ probability
0 1/4
1 0
2 0
3 0
4 1/4
5 0
6 0
7 0

,

ℓ probability
8 1/4
9 0
10 0
11 0
12 1/4
13 0
14 0
15 0

Observe that probabilities of ℓ near to 16s/4 (s = 0, . . . , 3) have larger values.
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Continued fraction

r: the order of x′ modulo N′.
We are given

x = 0.b1b2 . . . bt

that is close to s/r with high probability. The remaining task is to compute r
from b1b2 . . . bt. r can be determined by the continued fraction algorithm.

A continued fraction is
a0 +

1
a1 +

1
a2+

1
···+ 1

aN

, (1)

where a1, . . . , aN are positive integers and a0 ≥ 0. Denote the value of Eq. (1)
by [a0, a1, . . . , aN].
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Computation of a continued fraction

The representation of a continued fraction of rational x can be found, for
example, as follows:

31
13

= 2 +
5
13
= 2 +

1
13
5

= 2 +
1

2 + 3
5

= 2 +
1

2 + 1
5
3

= 2 +
1

2 + 1
1+ 2

3

= 2 +
1

2 + 1
1+ 1

3
2

= 2 +
1

2 + 1
1+ 1

1+ 1
2
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How to find the phase by the continued fraction

Recall that we have to find r from

x = 0.b1b2 . . . bt

such that x is close to s/r. We have the following theorem.
Theorem 1: Let [a0, . . . , aN] be the continued fraction of x. If |x − s/r| < 1

2r2

and gcd(s, r) = 1, then s/r is equal to [a0, . . . , an] for some 0 ≤ n ≤ N.
Proof. Its proof is given in “Quantum Computation and Quantum
Information,” ISBN: 0521635039.

We can make |x − s/r| < 1
2r2 by increasing t (the number of qubits used for

phase estimation). If we execute the order finding several times, we will
eventually have gcd(s, r) = 1. If we assume Theorem 1, the factorization can
be found as follows: Compute the continued fraction of x as [a0, . . . , aN]. For
each 0 ≤ n ≤ N, write [a0, . . . , an] as pn/qn and check whether qn satisfies that
(x′)qn mod N′ = 1 and gcd(N′, [(x′)qn/2 ± 1]) is a factor of N′. If it is the case,
we found a factor of N′. Otherwise, try again.
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Cost of continued fraction

Thus, if we assume Theorem 1, then what we have to do is to check the speed
(required computational time) of continued fraction computation.
Theorem 2: Let [a0, . . . , aN] be the continued fraction of rational
x = p/q > 1. Define p0 = a0, q0 = 1, p1 = 1 + a0a1, q1 = a1,

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2.

Then we have pn

qn
= [a0, . . . , an]

for n = 0, . . . , N.

Its proof is given in “Quantum Computation and Quantum Information,”
ISBN: 0521635039.

From the above theorem we can evaluate the required number N of
computational steps. Observe that pn > pn−1 and qn > qn−1. So we have
pn ≥ 2pn−2 and qn ≥ 2qn−2. Therefore N ≤ 2 log2 max{p, q}.

Matsumoto (Nagoya U.) QIP Course 11: Quantum Factorization Algorithm (Part 4) Sept. 2017 9 / 10



Exercise (15 min.?)

Let N′ = 35, x′ = 4, and x = 0.0010101 ≃ 1
6 . This can be a measurement

outcome of the phase estimation with t = 7.
1. Compute the continued fraction of x.
2. Let [a0, . . . , aN] be the continued fraction of x. Detemine an index n such
that qn is the order of x′ modulo N′, where pn/qn = [a0, . . . , an].
3. Compute a factor of N′ by using your answer to Q2.

Matsumoto (Nagoya U.) QIP Course 11: Quantum Factorization Algorithm (Part 4) Sept. 2017 10 / 10


