Interdisciplinary Energy Materials Science 2

Department
 Name

Insert an appropriate integer number in the respective. $\left(1 \mathrm{eV}=8065 \mathrm{~cm}^{-1}=11605 \mathrm{~K}=96 \mathrm{~kJ} / \mathrm{mol}\right)$
(a) The number of thermally excited electrons in silicon across the band gap of $E_{\mathrm{g}}=1.1 \mathrm{eV}$ is given by $n=n_{0}$ $\exp \left(-E_{\mathrm{g}} / 2 k_{\mathrm{B}} T\right)$, where $E_{\mathrm{g}} / 2 k_{\mathrm{B}} T$ at room temperature is about $2 \times 10^{\square}$.

$$
\frac{(1.1 \mathrm{eV}) \times(11605 \mathrm{~K} / \mathrm{eV})}{2 \times 300 \mathrm{~K}}=\frac{1.1 \mathrm{eV}}{2 \times 0.026 \mathrm{eV}}=2 \times 10^{1}
$$

(b) Chemical reaction with the activation energy of $E_{\mathrm{a}}=250 \mathrm{~kJ} / \mathrm{mol}$ is excited with a probability of $P=\exp (-$ $E_{\mathrm{a}} / R T$), where $E_{\mathrm{a}} / R T$ at room temperature is about $1 \times 10^{\square}$. (gas constant $R=k_{\mathrm{B}} N$, where N is the Avogadro number)

$$
\frac{(250 \mathrm{~kJ} / \mathrm{mol})}{(96 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{eV})} \frac{(11605 \mathrm{~K} / \mathrm{eV})}{(300 \mathrm{~K})}=\frac{2.6 \mathrm{eV}}{0.026 \mathrm{eV}}=1 \times 10^{2}
$$

(c) Energy spacing $h \nu$ coming from the molecular rotation is $22 \mathrm{~cm}^{-1}$, where $h \nu / k_{\mathrm{B}} T$ at room temperature is about $1 \times 10^{\square}$.

$$
\frac{\left(22 \mathrm{~cm}^{-1}\right)}{\left(8065 \mathrm{~cm}^{-1}\right)} \frac{(11605 \mathrm{~K} / \mathrm{eV})}{(300 \mathrm{~K})}=\frac{0.0027 \mathrm{eV}}{0.026 \mathrm{eV}}=1 \times 10^{-1}
$$

