
Scheme for the Optimal Gradient Method” is an optimal method in terms of complexity for the
dominant term ln(ε−1).

Remark 9.8 Many times, you will find in articles that a method has “optimal rate of convergence”.
In our case, if we apply the “General Scheme for the Optimal Gradient Method” to minx∈Rn f(x),
the number of iterations of this method to obtain f(xk) − f(x∗) < ε is k = k(L,x0,x

∗, ε) =

O
(√

L∥x0−x∗∥22
ε

)
and k = k(L, µ,x0,x

∗, ε) = O
(√

L
µ ln

L∥x0−x∗∥22
ε

)
for f(x) ∈ F1,1

L (Rn) and

S1,1
L,µ(R

n), respectively.
It is extremely important to note that this value is the maximum number of iterations in the

worse case scenario. To obtain the total complexity of the method, you need to multiply the above
number by the number of floating-point operations per iteration. This value also vary according to
the method.

Now, instead of doing line search at Step 4 of the General Scheme for the Optimal Gradient
Method, let us consider the constant step size iteration xk+1 := yk − 1

L∇f(yk) (see proof of
Theorem 9.5). From the calculations given at Exercise 1, we arrive to the following simplified
scheme. Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one
iteration.

Constant Step Scheme for the Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).
Step 3: Compute αk+1 ∈ (0, 1) from the equation α2

k+1 = (1− αk+1)α
2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

Observe that the sequences {xk}∞k=0 and {yk}∞k=0 generated by the “General Scheme” and the
“Constant Step Scheme for the Optimal Gradient Methods” are exactly the same4 if we choose
xk+1 := yk − 1

L∇f(yk) in the former method. Therefore, the result of Theorem 9.6 is still valid for
γ0 := α0(α0L− µ)/(1− α0).

Also, if we further impose γ0 = α0(α0L− µ)/(1− α0) = L, we will have the rate of convergence
of Theorem 9.7.

9.1 Discussion on Particular Cases

9.1.1 Accelerated Gradient Method for Smooth (Differentiable) Strongly Convex
Functions

In this case, we have µ > 0 and choosing γ0 := α0(α0L − µ)/(1 − α0) = µ, we can have further
simplifications:

αk =

√
µ

L
, βk =

√
L−√

µ
√
L+

√
µ
.

4strictly speaking, there is a one index difference between yk’s on these two methods due to the order yk is defined
in the loop.
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Accelerated Gradient Method for Smooth Strongly Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).

Step 3: Set yk+1 := xk+1 +
√
L−√

µ√
L+

√
µ
(xk+1 − xk), k := k + 1 and go to Step 1.

9.1.2 Accelerated Gradient Method for Smooth (Differentiable) Convex Functions

In the case µ = 0, there are much simpler variation of the method5.

Nesterov’s Accelerated Gradient Method for Smooth Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0, t0 := 1, and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).

Step 3: ti+1 :=
1 +

√
1 + 4t2i

2
.

Step 4: Set yk+1 := xk+1 +
ti − 1

ti+1
(xk+1 − xk), k := k + 1 and go to Step 1.

Moreover, this is equivalent to the following update as well.

Nesterov’s Accelerated Gradient Method for Smooth Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 1.
Step 1: Compute ∇f(yk−1).
Step 2: Set xk := yk−1 − 1

L∇f(yk−1).

Step 3: Set yk := xk +
k − 1

k + 2
(xk − xk−1), k := k + 1 and go to Step 1.

The Nesterov’s Accelerated Gradient Method for f ∈ F1,1
L (Rn) generates a sequence {xk}∞k=0

such that

f(xk)− f(x∗) ≤ 2L∥x0 − x∗∥22
(k + 1)2

.

Recently, itt was shown that an extension of this method guarantee a o(k−2) convergence for
f(xk)− f(x∗) by Attouch and Peypouquet6.

9.2 Exercises

1. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This is a
particular case of the General Scheme for the Optimal Gradient Method for the following
choice:

γk+1 := Lα2
k = (1− αk)γk + αkµ

yk =
αkγkvk + γk+1xk

γk + αkµ

xk+1 = yk −
1

L
∇f(yk)

vk+1 =
(1− αk)γkvk + αkµyk − αk∇f(yk)

γk+1
.

5Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543–547. It also has a scheme to estimate L in the case this constant in unknown.

6Hedy Attouch and Juan Peypouquet, “The rate of convergence of Nesterovs accelerated forward-backward method
is actually faster than 1/k2,” SIAM Journal on Optimization 26 (2016), pp. 1824-1834.
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(a) Show that vk+1 = xk +
1
αk

(xk+1 − xk).

(b) Show that yk+1 = xk+1 + βk(xk+1 − xk) for βk =
αk+1γk+1(1−αk)
αk(γk+1+αk+1µ)

.

(c) Show that βk = αk(1−αk)
α2
k+αk+1

.

(d) Explain why α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

10 Extension of the Optimal Gradient Method (First-Order Method,
Accelerated Gradient Method, Fast Gradient Method) for the
Min-Max Problems over Simple Closed Convex Sets

Suppose we are given Q a closed convex subset of Rn, simple enough to have an easy projection
onto it. E.g., positive orthant, n-dimensional box, simplex, Euclidean ball, ellipsoids, etc.

Given fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m), we define the following function f : Q → R,

f(x) := max
1≤i≤m

fi(x) for x ∈ Q. (15)

This function is non-differentiable in general, but convex (see Theorem 6.6). We will see that the
method discussed so far can be easily adapted for the following min-max-type convex optimization
problem. {

minimize f(x)
subject to x ∈ Q,

(16)

where Q is a closed convex set with a simple structure, and f(x) is defined as above.
For a given x̄ ∈ Q, let us define the following linearization of f(x) at x̄.

f(x̄;x) := max
1≤i≤m

[fi(x̄) + ⟨∇f i(x̄),x− x̄⟩] , for x ∈ Rn.

Lemma 10.1 Let fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m). For x ∈ Q, we have

f(x) ≥ f(x̄;x) +
µ

2
∥x− x̄∥22,

f(x) ≤ f(x̄;x) +
L

2
∥x− x̄∥22.

Proof:
It follows from the properties of fi ∈ S1,1

µ,L(Q).

Theorem 10.2 A point x∗ ∈ Q is an optimal solution of (16) with fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m)

if and only if
f(x∗;x) ≥ f(x∗;x∗) = f(x∗), ∀x ∈ Q.

Proof:
Indeed, if the inequality is true, it follows from Lemma 10.1 that

f(x) ≥ f(x∗;x) +
µ

2
∥x− x∗∥22 ≥ f(x∗) +

µ

2
∥x− x∗∥22 ≥ f(x∗), ∀x ∈ Q.

For the converse, let x∗ be an optimal solution of the minimization problem (16). Assume by
contradiction that there is a x ∈ Q such that f(x∗;x) < f(x∗).
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