Therefore, if we impose

$$
\frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}=\mathbf{0}
$$

it justifies our choice for \boldsymbol{y}_{k}. And putting

$$
\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}=\frac{1}{2 L}
$$

it justifies our choice for α_{k}. Since $\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k} \mu}{\gamma_{k+1}} \geq 0$, we finally obtain $\phi_{k+1}^{*} \geq f\left(\boldsymbol{x}_{k+1}\right)$ as wished.
The above theorem suggests an algorithm to minimize $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$.
Notice that in the following optimal gradient method, we don't need the estimated sequence anymore.

General Scheme for the Optimal Gradient Method

Step 0: Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, let $\gamma_{0}>0$ such that $L \geq \gamma_{0} \geq \mu \geq 0$.

$$
\text { Set } \boldsymbol{v}_{0}:=\boldsymbol{x}_{0} \text { and } k:=0
$$

Step 1: Compute $\alpha_{k} \in(0,1]$ from the equation $L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu$.
Step 2: Set $\gamma_{k+1}:=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu, \boldsymbol{y}_{k}:=\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu}$.
Step 3: Compute $f\left(\boldsymbol{y}_{k}\right)$ and $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.
Step 4: Find \boldsymbol{x}_{k+1} such that $f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}$ using "line search".
Step 5: Set $\boldsymbol{v}_{k+1}:=\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}}, k:=k+1$ and go to Step 1.
Theorem 9.6 Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). The general scheme of the optimal gradient method generates a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ such that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \lambda_{k}\left[f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}-f\left(\boldsymbol{x}^{*}\right)\right]
$$

where $\alpha_{-1}=0$ and $\lambda_{k}=\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)$. Moreover,

$$
\lambda_{k} \leq \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4 L}{\left(2 \sqrt{L}+k \sqrt{\gamma_{0}}\right)^{2}}\right\}
$$

In other words, the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)\right\}_{k=0}^{\infty}$ converges R-sublinearly to zero if $\mu=0$ and R-linearly to zero if $\mu>0$. In addition, if $\mu>0$,

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2} \leq \frac{2}{\mu} \lambda_{k}\left[f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}-f\left(\boldsymbol{x}^{*}\right)\right] .
$$

Proof:
The first part is obvious from the definition and Lemma 9.2.
We already know that $\alpha_{k} \geq \sqrt{\frac{\mu}{L}}(k=0,1, \ldots)$ (see proof of Theorem 9.5), therefore,

$$
\lambda_{k}=\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)=\prod_{i=0}^{k-1}\left(1-\alpha_{i}\right) \leq\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}
$$

which only has an effect if $\mu>0$. For the case $\mu=0$, let us prove first that $\gamma_{k}=\gamma_{0} \lambda_{k}$. Obviously $\gamma_{0}=\gamma_{0} \lambda_{0}$, and assuming the induction hypothesis,

$$
\gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu=\left(1-\alpha_{k}\right) \gamma_{k}=\left(1-\alpha_{k}\right) \gamma_{0} \lambda_{k}=\gamma_{0} \lambda_{k+1}
$$

Therefore, $L \alpha_{k}^{2}=\gamma_{k+1}=\gamma_{0} \lambda_{k+1}$. Since λ_{k} is a decreasing sequence

$$
\begin{aligned}
\frac{1}{\sqrt{\lambda_{k+1}}}-\frac{1}{\sqrt{\lambda_{k}}} & =\frac{\sqrt{\lambda_{k}}-\sqrt{\lambda_{k+1}}}{\sqrt{\lambda_{k} \lambda_{k+1}}}=\frac{\lambda_{k}-\lambda_{k+1}}{\sqrt{\lambda_{k} \lambda_{k+1}\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{k+1}}\right)}} \\
& \geq \frac{\lambda_{k}-\lambda_{k+1}}{\sqrt{\lambda_{k} \lambda_{k+1}}\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{k}}\right)}=\frac{\lambda_{k}-\lambda_{k+1}}{2 \lambda_{k} \sqrt{\lambda_{k+1}}}=\frac{\lambda_{k}-\left(1-\alpha_{k}\right) \lambda_{k}}{2 \lambda_{k} \sqrt{\lambda_{k+1}}} \\
& =\frac{\alpha_{k}}{2 \sqrt{\lambda_{k+1}}}=\frac{1}{2} \sqrt{\frac{\gamma_{0}}{L}}
\end{aligned}
$$

Thus

$$
\frac{1}{\sqrt{\lambda_{k}}} \geq 1+\frac{k}{2} \sqrt{\frac{\gamma_{0}}{L}}
$$

and we have the result.
For $\mu>0$, using the definition of strong convexity of $f(\boldsymbol{x})$, we obtain the upper bound for $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2}$.

Theorem 9.7 Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). If we take $\gamma_{0}=L$, the general scheme of the "optimal" gradient method generates a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ such that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq L \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4}{(k+2)^{2}}\right\}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

This means that it is "optimal" for the class of functions from $\mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$ with $\mu>0$, or $\mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$.
In the particular case of $\mu>0$, we have the following inequality for k sufficiently large:

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq \frac{2 L}{\mu} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4}{(k+2)^{2}}\right\}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

That means that the sequence $\left\{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}\right\}_{k=0}^{\infty}$ converges R-linearly to zero.
Proof:
The two inequalities follow from the previous theorem, $f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}^{*}\right) \leq\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\rangle+$ $\frac{L}{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}$, and the fact that $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.

For the case $\mu=0$, the "optimality" of the method is obvious from Theorem 7.1.
Let us analyze the case when $\mu>0$. From Theorem 7.2, we know that we can find functions $f \in \mathcal{S}_{\mu, L}^{\infty, 1}\left(\mathbb{R}^{\infty}\right)$ such that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}\right)^{2 k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} \geq \frac{\mu}{2} \exp \left(-\frac{4 k}{\sqrt{L / \mu}-1}\right)\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

where the second inequality follows from $\ln \left(\frac{a-1}{a+1}\right)=-\ln \left(\frac{a+1}{a-1}\right) \geq 1-\frac{a+1}{a-1}=-\frac{2}{a-1}$, for $a \in(1,+\infty)$. Therefore, the worst case bound to find \boldsymbol{x}_{k} such that $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)<\varepsilon$ can not be better than

$$
k>\frac{\sqrt{L / \mu}-1}{4}\left(\ln \frac{1}{\varepsilon}+\ln \frac{\mu}{2}+2 \ln \left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}\right) .
$$

On the other hand, from the above result

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}\left(1-\sqrt{\frac{\mu}{L}}\right)^{k} \leq L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} \exp \left(-\frac{k}{\sqrt{L / \mu}}\right)
$$

where the second inequality follows from $\ln (1-a) \leq-a$ for $a<1$. Therefore, we can guarantee $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)<\varepsilon$ for $k>\sqrt{L / \mu}\left(\ln \frac{1}{\varepsilon}+\ln L+2 \ln \left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}\right)$. This shows that the "General

