Theorem 7.2 For any $\boldsymbol{x}_{0} \in \mathbb{R}^{\infty}$, there exists a function $f \in \mathcal{S}_{\mu, L}^{\infty, 1}\left(\mathbb{R}^{\infty}\right)$ such that for any gradient based method of type \mathcal{M}, we have

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) & \geq \frac{\mu}{2}\left(\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}\right)^{2 k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} & \geq\left(\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}\right)^{2 k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
\end{aligned}
$$

where \boldsymbol{x}^{*} is the minimum of $f(\boldsymbol{x})$.
Proof:
This type of methods are invariant with respect to a simultaneous shift of all objects in the space of variables. Therefore, we can assume that $\boldsymbol{x}_{0}=\{0\}_{i=1}^{\infty}$.

Consider the following quadratic function

$$
f_{\mu, L}(\boldsymbol{x})=\frac{\mu(L / \mu-1)}{8}\left\{[\boldsymbol{x}]_{1}^{2}+\sum_{i=1}^{\infty}\left([\boldsymbol{x}]_{i}-[\boldsymbol{x}]_{i+1}\right)^{2}-2[\boldsymbol{x}]_{1}\right\}+\frac{\mu}{2}\|\boldsymbol{x}\|_{2}^{2}
$$

Then

$$
\nabla \boldsymbol{f}_{\mu, L}(\boldsymbol{x})=\left(\frac{\mu(L / \mu-1)}{4} \boldsymbol{A}+\mu \boldsymbol{I}\right) \boldsymbol{x}-\frac{\mu(L / \mu-1)}{4} \boldsymbol{e}_{1}
$$

where \boldsymbol{A} is the same tridiagonal matrix defined in Theorem 7.1, but with infinite dimension and $e_{1} \in \mathbb{R}^{\infty}$ is a vector where only the first element is one.

After some calculations, we can show that $\mu \boldsymbol{I} \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}) \preceq L \boldsymbol{I}$ and therefore, $f(\boldsymbol{x}) \in \mathcal{S}_{\mu, L}^{\infty, 1}\left(\mathbb{R}^{\infty}\right)$, due to Corollary 6.21.

The minimal optimal solution of this function is:

$$
\left[\boldsymbol{x}^{*}\right]_{i}:=q^{i}=\left(\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}\right)^{i}, \quad i=1,2, \ldots
$$

Then

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}=\sum_{i=1}^{\infty}\left[\boldsymbol{x}^{*}\right]_{i}^{2}=\sum_{i=1}^{\infty} q^{2 i}=\frac{q^{2}}{1-q^{2}}
$$

Now, since $\boldsymbol{\nabla} \boldsymbol{f}_{\mu, L}\left(\boldsymbol{x}_{0}\right)=-\frac{\mu(L / \mu-1)}{4} \boldsymbol{e}_{1}$, and \boldsymbol{A} is a tridiagonal matrix, $\left[\boldsymbol{x}_{k}\right]_{i}=0$ for $i=k+1, k+$ $2, \ldots$, and

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} \geq \sum_{i=k+1}^{\infty}\left[\boldsymbol{x}^{*}\right]_{i}^{2}=\sum_{i=k+1}^{\infty} q^{2 i}=\frac{q^{2(k+1)}}{1-q^{2}}=q^{2 k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

Finally, the first inequality follows from Corollary 6.17.

8 The Steepest Descent Method for Differentiable Convex and Differentiable Strongly Convex Functions with Lipschitz Continuous Gradients

Let us consider the steepest descent method with constant step h.
Theorem 8.1 Let $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$, and $0<h<\frac{2}{L}$. The steepest descent method with constant step generates a sequence which converges as follows:

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{2\left(f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}^{*}\right)\right)\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{2\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+k h(2-L h)\left(f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}^{*}\right)\right)}
$$

Proof:

Denote $r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}$. Then

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}-h \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 h\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle+h^{2}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 h\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle+h^{2}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& \leq r_{k}^{2}-h\left(\frac{2}{L}-h\right)\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

where the last inequality follows from Theorem 6.13.
Therefore, since $0<h<\frac{2}{L}, r_{k+1}<r_{k}<\cdots<r_{0}$.
Now

$$
\begin{align*}
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right\|_{2}^{2} \\
& =f\left(\boldsymbol{x}_{k}\right)-\omega\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}<f\left(\boldsymbol{x}_{k}\right) \tag{10}
\end{align*}
$$

where $\omega=h\left(1-\frac{L}{2} h\right)$. Denoting by $\Delta_{k}=f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)$, from the convexity of $f(\boldsymbol{x})$, Theorem 6.7, and the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\Delta_{k}=f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle \leq\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2} r_{k} \leq\left\|\nabla \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2} r_{0} \tag{11}
\end{equation*}
$$

Combining (10) and (11),

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\omega}{r_{0}^{2}} \Delta_{k}^{2}
$$

Thus dividing by $\Delta_{k} \Delta_{k+1}$,

$$
\frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}+\frac{\omega}{r_{0}^{2}} \frac{\Delta_{k}}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}+\frac{\omega}{r_{0}^{2}}
$$

since $\frac{\Delta_{k}}{\Delta_{k+1}} \geq 1$. Summing up these inequalities we get

$$
\frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{0}}+\frac{\omega}{r_{0}^{2}}(k+1)
$$

To obtain the optimal step size, it is sufficient to find the maximum of the function $\omega:=\omega(h)=$ $h\left(1-\frac{L}{2} h\right)$ which is $h^{*}:=1 / L$.

Corollary 8.2 If $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$, the steepest descent method with constant step $h=1 / L$ yields

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{2 L\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{k+4}
$$

That is, $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}_{k=0}^{\infty}$ converges R-sublinearly to $f\left(\boldsymbol{x}^{*}\right)$.

Proof:

Left for exercise.
Theorem 8.3 Let $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, and $0<h \leq \frac{2}{\mu+L}$. The steepest descent method with constant step generates a sequence which converges as follows:

$$
\begin{aligned}
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} & \leq\left(1-\frac{2 h \mu L}{\mu+L}\right)^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) & \leq \frac{L}{2}\left(1-\frac{2 h \mu L}{\mu+L}\right)^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
\end{aligned}
$$

If $h=\frac{2}{\mu+L}$, then

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) & \leq \frac{L}{2}\left(\frac{L / \mu-1}{L / \mu+1}\right)^{2 k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2} & \leq\left(\frac{L / \mu-1}{L / \mu+1}\right)^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}
\end{aligned}
$$

That is, $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ and $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}_{k=0}^{\infty}$ converges R-linearly to \boldsymbol{x}^{*} and $f\left(\boldsymbol{x}^{*}\right)$, respectively.
Proof:
Denote $r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}$. Then

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}-h \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 h\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle+h^{2}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 h\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle+h^{2}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& \leq r_{k}^{2}-2 h\left(\frac{\mu L}{\mu+L} r_{k}^{2}+\frac{1}{\mu+L}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\right\|_{2}^{2}\right)+h^{2}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \\
& =\left(1-\frac{2 h \mu L}{\mu+L}\right) r_{k}^{2}+h\left(h-\frac{2}{\mu+L}\right)\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

from Theorems 6.13 and 6.22 , and it proves the first two inequalities.
Now, for $h=2 /(L+\mu)$ and again from Theorem 6.13,

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)-\left\langle\boldsymbol{\nabla} f\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\rangle & \leq \frac{L}{2}\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
& \leq \frac{L}{2}\left(\frac{L / \mu-1}{L / \mu+1}\right)^{2 k} r_{0}^{2}
\end{aligned}
$$

Theorem 8.4 (Yuan 2010) ${ }^{2}$ In the special case of a strongly convex quadratic function $f(\boldsymbol{x})=$ $\frac{1}{2}\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle+\langle\boldsymbol{a}, \boldsymbol{x}\rangle+\alpha$ with $\lambda_{1}(\boldsymbol{A})=L \geq \lambda_{n}(\boldsymbol{A})=\mu>0$, we can obtain

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2} \leq\left(\frac{L / \mu-1}{L / \mu+\sqrt{\frac{\mu}{2 L}}}\right)^{k}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}
$$

for the steepest descent method with "exact line search".

- Note that the previous result for the steepest descent method, Theorem 5.12, was only a local result. Theorems 8.1 and 8.3 guarantee that the steepest descent method converges for any starting point $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ (due to convexity).
- Comparing the rate of convergence of the steepest descent method for the classes $\mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ and $\mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$ (Theorems 8.1, Corollary 8.2 , and 8.3 , respectively) with their lower complexity bounds (Theorems 7.1 and 7.2 , respectively), we possible have a huge gap.

[^0]
8.1 Exercises

1. Prove Corollary 8.2.
2. Consider a sequence $\left\{\beta_{k}\right\}_{k=0}^{\infty}$ which converges to zero.

The sequence is said to converge Q-sublinearly if

$$
\lim _{k \rightarrow \infty} \sup \left|\frac{\beta_{k+1}}{\beta_{k}}\right|=1
$$

A zero converging sequence $\left\{\beta_{k}\right\}_{k=0}^{\infty}$ is said to converge R-sublinearly if it is dominated by a Q -sublinearly converging sequence. That is, if there is a Q -sublinearly converging sequence $\left\{\hat{\beta_{k}}\right\}_{k=0}^{\infty}$ such that $0 \leq\left|\beta_{k}\right| \leq \hat{\beta_{k}}$.
(a) Show that a Q-linear converging sequence is a Q-sublinear converging sequence.
(b) Give an example of a Q-sublinear converging sequence which is not Q-linear converging sequence.
(c) Give an example of a R-sublinear converging sequence which is not R -linear converging sequence.

9 The Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov 3 in 1983. In [Nesterov03], he gives a reinterpretation of the algorithm and provides another justification of it which attains the same complexity bound of the original article.

Definition 9.1 A pair of sequences $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ with $\lambda_{k} \geq 0$ is called an estimate sequence of the function $f(\boldsymbol{x})$ if

$$
\lambda_{k} \rightarrow 0,
$$

and for any $\boldsymbol{x} \in \mathbb{R}^{n}$ and any $k \geq 0$, we have

$$
\phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) .
$$

Lemma 9.2 Given an estimate sequence $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty},\left\{\lambda_{k}\right\}_{k=0}^{\infty}$, and if for some sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ we have

$$
f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x})
$$

then $f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f\left(\boldsymbol{x}^{*}\right)\right) \rightarrow 0$.
Proof:
It follows from the definition.
Lemma 9.3 Assume that

1. $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$).
2. $\phi_{0}(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^{n}.
3. $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^{n}.
[^1]
[^0]: ${ }^{2}$ Y.-X. Yuan, "A short note on the Q-linear convergence of the steepest descent method", Mathematical Programming 123 (2010), pp. 339-343.

[^1]: ${ }^{3} \mathrm{Y}$. Nesterov, "A method for solving the convex programming problem with convergence rate $\mathcal{O}\left(1 / k^{2}\right)$," Dokl. Akad. Nauk SSSR 269 (1983), pp. 543-547.

