= fla)-h (1= 51) IVH@IE )

Thus, one step of the steepest descent method decreases the value of the objective function at
least as follows for h* =1/L.

F(w) < ()~ 5 IV F(@)]

Now, for the Goldstein-Armijo Rule, since @y = x, — hy V f(xy), we have:

f(mr) = farsr) < Bhil|V ()3,

and from (5)
iy

) - fonn) = b (1- 5L ) 195013

Therefore, hy, > 2(1 — )/L.
Also, substituting in

flak) = flarin) > ahil|V F ()3 > %a(l ~ BV f (zn)II5.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

f@n) = f@i) > SV @)l

for some positive constant w.
Summing up the above inequality we have:

N
=Y IVE@I < fl@o) — flani) < flzo) - f°
k=0

where f* is the optimal value of the problem.
As a simple consequence we have

IVf(xg)]l2—0 as k— oo.

Finally,

. ‘ 1 L i} 1/2
divi= i [V F @0l < e | E (70 - )] ©)

Remark 5.8 g3, — 0, but we cannot say anything about the rate of convergence of the sequence

{f(zx)} or {zx}.

Example 5.9 Consider the function f(z,y) = 22?2 + 3y — 142 (0,—1)T and (0,1)7 are local
minimal solutions, but (0,0)7 is a stationary point.

If we start the steepest descent method from (1,0)”, we will only converge to the stationary
point.

We focus now on the following problem class:

Model: 1. min f(x)
zcR"

2. feCy'(RY)

3. f(x) is bounded from below

Oracle: Only function and gradient values are available
Approximate solution: | Find & € R" such that f(&) < f(xo) and ||V f(Z)|]2 < €
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From (6), we have

. L .

Remark 5.10 This is much better than the result of Theorem 5.6, since it does not depend on n.

Finally, consider the following problem under Assumption 5.11.

Assumption 5.11
2,2
1. feCy (R");
2. There is a local minimum «* of the function f(x);

3. We know some bound 0 < ¢ < L < oo for the Hessian at x*:

(I < V2f(x*) < LI;

4. Our starting point xg is close enough to x*.

Theorem 5.12 Let f(x) satisfy our assumptions above and let the starting point xg be close
enough to a local minimum:

oo — x|z < 7 = o
ro = — = —.
0 0 2 M

Then, the steepest descent method with step-size h* = 2/(L + ) converges as follows:

_ k
. Tro 2/
- < 1-— .
s “"'2—f—r0< L+3€>

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are 1 = @ — hi V f (k).
Since V f(x*) =0,

V(o) = V() - Vi) = [ V24 sl - 2o 2 = Gula -2
and therefore,
Tpi1 — " =z — & — WGz, — x*) = (I — hpGg) (), — 7).
Let ry = ||xr — «*||2. From Lemma 3.7,
V2f(x*) — Ml < V2f(x* + 7(x) — x*)) < V2f(x*) + 7Mry 1.
Integrating all parts from 0 to 1 and using our hypothesis,
(- %’“M)I <Gy = (L+ %’“M)I.

Therefore,
(1 — (L + %’“M)) I<1—-hGy < (1 — (0 — %M}) I.

16



We arrive at
1 — heGrll2 < max{|ak(hg)], [bx (P )|}

where ay(h) =1 —h(f — % M) and by (h) = h(L + 5 M) — 1.
Notice that a;(0) = 1 and b;(0) = —1.

Now, let us use our hypothesis that rg < 7.
When ay(h) = bi(h), we have 1 — h(€ — Z: M) = h(L 4 Z- M) — 1, and therefore

2
hy = ——.
R L+d
(Surprisingly, it does not depend neither on M nor r). Finally,

2
s =l = ol < (1= 2 (6= 01 ) low — ol

That is,
< Lfﬁ_i_rkM .
T4l S Li¢ T+e)™™

and rg <rp < T
Now, let us analyze the rate of convergence. Multiplying the above inequality by M /(L + ¢),

Mryy  M(L—1?) M?r?
< Tk + .
L+¢ (L+£)2 (L + 0)?

Calling oy, = ]‘L{:’Z and g = %, we have

ag(l — (og — Q)z)'

1 — (. —q) @)

apr1 < (1 —@ag+ai = ap(l+ag —q) =

Now, since 1, < QME, ap —q = ]gfg — LQ—fe < 0,and 1+ (o — q) = ﬁ—;g + ]Z[J:@ > 0. Therefore,

—1 < ap—¢q<0,and (7) becomes < &

1+qg—ay°
1 > 1+q_1.
Ok41 o
1
Q_lzq(w_q_lzmq)(fz_l).
Q41 Qg Qg

and then,
q s 4 s 20 L+Y¢ (T
L _1>q L _1)=q P ) =a L_q).
Lozt (L) —arot (P 1) a2

Finally, we arrive at
H " H < rTo 1 2/ k
Ty = ||Tp — T - .
k F SR ) L+3¢
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5.4 The Newton Method
Example 5.13 Let us apply the Newton method to find the root of the following function

t
t) = .
=ie
Clearly t* = 0.
The Newton method will give:
o(tk)

lpt1 =t — & (t) =ty — ti(1 +t3) = —t}.

Therefore, the method converges if |tg| < 1, it oscillates if |tg| = 1, and finally, diverges if |to| > 1.
Assumption 5.14
2,2 .
1. fecCy (R");
2. There is a local minimum x* of the function f(x);
3. The Hessian is positive definite at x*:

V2f(x*) =4I, (>0;

4. Our starting point xg is close enough to x*.

Theorem 5.15 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point ag is close enough to x*:

—x¥| < T i= —.
leo —x"|l2 < T Wi

Then ||z — x*||2 < 7 for all k of the Newton method and it converges (Q-)quadratically:

M||zy, — z*|3
t = M|z —z*|]2)

*
— <
|Zpr1 —x™||2 < 2

Proof:
Let ry = ||k — «*||2. From Lemma 3.7 and the assumption, we have for k = 0,

V2 f(xo) = V2f(x*) — Mrol = (¢ — Mro)I. (8)

Since rg < T = 32—]@ < ﬁ, we have ¢ — Mrg > 0 and therefore, V2 f(xg) is invertible.

Consider the Newton method for k = 0, 1 = zg — [V f(x0)] "'V £ (x0).
Then

z—a* = xo—a" V(o) Vf(xo)
1
= xg—x" — [VQf(azg)]_l/O Vif(x* + 7(xo — x*)) (20 — 2*)dr
= [V f(z0)] "' Go(zo — z")

where Gy = fol (V2 f(xo) — V2f(z* + 7(zo — x*))]dT.
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