Given a positive integer p > 0,

1. Form $(p+1)^n$ points

$$oldsymbol{x}_{i_1,i_2,\ldots,i_n} = \left(rac{i_1}{p},rac{i_2}{p},\ldots,rac{i_n}{p}
ight)^T$$

where $(i_1, i_2, \dots, i_n) \in \{0, 1, \dots, p\}^n$.

- 2. Among all points $x_{i_1,i_2,...,i_n}$, find a point \bar{x} which has the minimal value for the objective function.
- 3. Return the pair $(\bar{\boldsymbol{x}}, f(\bar{\boldsymbol{x}}))$ as the result.

Theorem 5.4 Let $f(x^*)$ be the global optimal value for (4). Then the uniform grid method yields

$$f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le \frac{L}{2p}.$$

Proof:

Let \boldsymbol{x}^* be a global optimal solution. Then there are coordinates (i_1, i_2, \ldots, i_n) such that $\boldsymbol{x} := \boldsymbol{x}_{i_1, i_2, \ldots, i_n} \leq \boldsymbol{x}^* \leq \boldsymbol{x}_{i_1+1, i_2+1, \ldots, i_n+1} =: \boldsymbol{y}$. Observe that $[\boldsymbol{y}]_i - [\boldsymbol{x}]_i = 1/p$ for $i = 1, 2, \ldots, n$ and $[\boldsymbol{x}^*]_i \in [[\boldsymbol{x}]_i, [\boldsymbol{y}]_i]$ $(i = 1, 2, \ldots, n)$.

Consider $\hat{\boldsymbol{x}} = (\boldsymbol{x} + \boldsymbol{y})/2$ and form a new point $\tilde{\boldsymbol{x}}$ as:

$$[\tilde{\boldsymbol{x}}]_i := \left\{ egin{array}{cc} [\boldsymbol{y}]_i, & ext{if } [\boldsymbol{x}^*]_i \geq [\hat{\boldsymbol{x}}]_i \ [\boldsymbol{x}]_i, & ext{otherwise.} \end{array}
ight.$$

It is clear that $|[\tilde{\boldsymbol{x}}]_i - [\boldsymbol{x}^*]_i| \leq 1/(2p)$ for i = 1, 2, ..., n. Then $\|\tilde{\boldsymbol{x}} - \boldsymbol{x}^*\|_{\infty} = \max_{1 \leq i \leq n} |[\tilde{\boldsymbol{x}}]_i - [\boldsymbol{x}^*]_i| \leq 1/(2p)$. Since $\tilde{\boldsymbol{x}}$ belongs to the grid,

$$f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le f(\tilde{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le L \|\tilde{\boldsymbol{x}} - \boldsymbol{x}^*\|_{\infty} \le L/(2p).$$

Let us define our goal

Find
$$\boldsymbol{x} \in B_n$$
 such that $f(\boldsymbol{x}) - f(\boldsymbol{x}^*) < \varepsilon$.

Corollary 5.5 The number of iterations necessary for the problem (4) to achieve the above goal using the uniform grid method is at most

$$\left(\left\lfloor\frac{L}{2\varepsilon}\right\rfloor + 2\right)^n.$$

Proof:

Take $p = \lfloor L/(2\varepsilon) \rfloor + 1$. Then, $p > L/(2\varepsilon)$ and from the previous theorem, $f(\bar{x}) - f(x^*) \le L/(2p) < \varepsilon$. Observe that we constructed $(p+1)^n$ points.

Consider the class of problems \mathcal{P} defined as follows:

Model:	$\min_{oldsymbol{x}\in B_n}f(oldsymbol{x}),$
	$f(\boldsymbol{x})$ is ℓ_{∞} -Lipschitz continuous on B_n .
Oracle:	Only function values are available
Approximate solution:	Find $\bar{\boldsymbol{x}} \in B_n$ such that $f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) < \varepsilon$

Theorem 5.6 For $\varepsilon < \frac{L}{2}$, the number of iterations necessary for the class of problems \mathcal{P} using any method which uses only function evaluations is always at least $(\lfloor \frac{L}{2\varepsilon} \rfloor)^n$.

Proof:

Let $p = \lfloor \frac{L}{2\varepsilon} \rfloor$ (which is ≥ 1 from the hypothesis).

Suppose that there is a method which requires $N < p^n$ calls of the oracle to solve the problem in \mathcal{P} .

Then, there is a point $\hat{\boldsymbol{x}} \in B_n = \{\boldsymbol{x} \in \mathbb{R}^n \mid 0 \leq [\boldsymbol{x}]_i \leq 1, i = 1, 2, ..., n\}$ where there is no test points in the <u>interior</u> of $B := \{\boldsymbol{x} \mid \hat{\boldsymbol{x}} \leq \boldsymbol{x} \leq \hat{\boldsymbol{x}} + \boldsymbol{e}/p\}$ where $\boldsymbol{e} = (1, 1, ..., 1)^T \in \mathbb{R}^n$.

Let $\mathbf{x}^* := \hat{\mathbf{x}} + \mathbf{e}/(2p)$ and consider the function $\bar{f}(\mathbf{x}) := \min\{0, L \| \mathbf{x} - \mathbf{x}^* \|_{\infty} - \varepsilon\}$. Clearly, \bar{f} is ℓ_{∞} -Lipschitz continuous with constant L and its global minimum is $-\varepsilon$. Moreover, $\bar{f}(\mathbf{x})$ is non-zero valued only inside the box $B' := \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}^*\|_{\infty} \le \varepsilon/L\}$.

Since $2p \leq L/\varepsilon$, $B' \subseteq \{\boldsymbol{x} \mid \|\boldsymbol{x} - \boldsymbol{x}^*\|_{\infty} \leq 1/(2p)\} \subseteq B$.

Therefore, $\bar{f}(\boldsymbol{x})$ is equal to zero to all test points of our method and the accuracy of the method is ε .

If the number of calls of the oracle is less than p^n , the accuracy can not be better than ε . Theorem 5.6 supports the claim that the *general optimization problem are unsolvable*.

Example 5.7 Consider a problem defined by the following parameters. L = 2, n = 10, and $\varepsilon = 0.01$.

lower bound $(L/(2\varepsilon))^n$:	10^{20} calls of the oracle
computational complexity of the oracle	:	at least n arithmetic operations
total complexity	:	10^{21} arithmetic operations
CPU	:	1GHz or 10^9 arithmetic operations per second
total time	:	10^{12} seconds
one year	:	$\leq 3.2 \times 10^7$ seconds
we need	:	≥ 10000 years

- If we change n by n + 1, the # of calls of the oracle is multiplied by 100.
- If we multiply ε by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 5.5 that the number of iterations of the uniform grid method is at least $(\lfloor L/(2\varepsilon) \rfloor + 2)^n$. Theorem 5.6 showed that any method which uses only function evaluations requires at least $(\lfloor L/(2\varepsilon) \rfloor)^n$ calls to have a better performance than ε . If for instance we take $\varepsilon = \mathcal{O}(L/n)$, these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an optimal method for the class of problems \mathcal{P} .

5.3 Steepest Descent Method

Consider $f : \mathbb{R}^n \to \mathbb{R}$ a differentiable function on its domain.

Steepest Descent Method			
Choose:	$oldsymbol{x}_0 \in \mathbb{R}^n$		
Iterate:	$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - h_k \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_k), \ k = 0, 1, \dots$		

We consider four strategies for the step-size h_k :

1. Constant Step

The sequence $\{h_k\}_{k=0}^{\infty}$ is chosen in *advance*. For example

$$h_k := h > 0,$$
$$h_k := \frac{h}{\sqrt{k+1}}.$$

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence $\{h_k\}_{k=0}^{\infty}$ is chosen such that

$$h_k := \arg\min_{h\geq 0} f(\boldsymbol{x}_k - h\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_k)).$$

This choice is only theoretical since even for the one dimensional case, it is very difficult and expensive.

3. Goldstein-Armijo Rule

Find a sequence $\{h_k\}_{k=0}^{\infty}$ such that

$$egin{array}{lll} lpha \langle oldsymbol{
abla} f(oldsymbol{x}_k), oldsymbol{x}_k - oldsymbol{x}_{k+1}
angle &\leq f(oldsymbol{x}_k) - f(oldsymbol{x}_{k+1}), \ eta \langle oldsymbol{
abla} f(oldsymbol{x}_k), oldsymbol{x}_k - oldsymbol{x}_{k+1}
angle &\geq f(oldsymbol{x}_k) - f(oldsymbol{x}_{k+1}), \end{array}$$

where $0 < \alpha < \beta < 1$ are fixed parameters.

Since $f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k - h_k \nabla f(\boldsymbol{x}_k)),$

$$f(\boldsymbol{x}_k) - \beta h_k \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_k)\|_2^2 \le f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_k) - \alpha h_k \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_k)\|_2^2.$$

The acceptable steps exist unless $f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k - h \nabla f(\boldsymbol{x}_k))$ is not bounded from below.

4. Barzilai-Borwein Step-Size¹

Let us define $\boldsymbol{s}_{k-1} := \boldsymbol{x}_k - \boldsymbol{x}_{k-1}$ and $\boldsymbol{y}_{k-1} := \nabla \boldsymbol{f}(\boldsymbol{x}_k) - \nabla \boldsymbol{f}(\boldsymbol{x}_{k-1})$. Then, we can define the Barzilai-Borwein (BB) step sizes $\{h_k^1\}_{k=1}^{\infty}$ and $\{h_k^2\}_{k=1}^{\infty}$:

$$egin{aligned} h_k^1 &:= rac{\|m{s}_{k-1}\|_2^2}{\langlem{s}_{k-1},m{y}_{k-1}
angle}, \ h_k^2 &:= rac{\langlem{s}_{k-1},m{y}_{k-1}
angle}{\|m{y}_{k-1}\|_2^2}. \end{aligned}$$

The first step-size is the one which minimizes the following secant condition $\|\frac{1}{h}\boldsymbol{s}_{k-1} - \boldsymbol{y}_{k-1}\|_2^2$ while the second one minimizes $\|\boldsymbol{s}_{k-1} - h\boldsymbol{y}_{k-1}\|_2^2$.

Now, consider the problem

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})$$
 where $f\in\mathcal{C}_L^{1,1}(\mathbb{R}^n),$ and $f(\boldsymbol{x})$ is bounded from below.

Let us evaluate the result of one step of the steepest descent method. Consider $y = x - h\nabla f(x)$. From Lemma 3.5,

$$\begin{split} f(\boldsymbol{y}) &\leq f(\boldsymbol{x}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{L}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_2^2 \\ &= f(\boldsymbol{x}) - h \| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) \|_2^2 + \frac{h^2 L}{2} \| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) \|_2^2 \end{split}$$

¹J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," *IMA Journal of Numerical Analysis*, 8 (1988), pp. 141–148.