Given a positive integer $p>0$,

1. Form $(p+1)^{n}$ points

$$
\boldsymbol{x}_{i_{1}, i_{2}, \ldots, i_{n}}=\left(\frac{i_{1}}{p}, \frac{i_{2}}{p}, \ldots, \frac{i_{n}}{p}\right)^{T}
$$

where $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1, \ldots, p\}^{n}$.
2. Among all points $\boldsymbol{x}_{i_{1}, i_{2}, \ldots, i_{n}}$, find a point $\overline{\boldsymbol{x}}$ which has the minimal value for the objective function.
3. Return the pair $(\overline{\boldsymbol{x}}, f(\overline{\boldsymbol{x}}))$ as the result.

Theorem 5.4 Let $f\left(\boldsymbol{x}^{*}\right)$ be the global optimal value for (4). Then the uniform grid method yields

$$
f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq \frac{L}{2 p}
$$

Proof:
Let \boldsymbol{x}^{*} be a global optimal solution. Then there are coordinates $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ such that $\boldsymbol{x}:=$ $\boldsymbol{x}_{i_{1}, i_{2}, \ldots, i_{n}} \leq \boldsymbol{x}^{*} \leq \boldsymbol{x}_{i_{1}+1, i_{2}+1, \ldots, i_{n}+1}=: \boldsymbol{y}$. Observe that $[\boldsymbol{y}]_{i}-[\boldsymbol{x}]_{i}=1 / p$ for $i=1,2, \ldots, n$ and $\left[\boldsymbol{x}^{*}\right]_{i} \in\left[[\boldsymbol{x}]_{i},[\boldsymbol{y}]_{i}\right](i=1,2, \ldots, n)$.

Consider $\hat{\boldsymbol{x}}=(\boldsymbol{x}+\boldsymbol{y}) / 2$ and form a new point $\tilde{\boldsymbol{x}}$ as:

$$
[\tilde{\boldsymbol{x}}]_{i}:= \begin{cases}{[\boldsymbol{y}]_{i},} & \text { if }\left[\boldsymbol{x}^{*}\right]_{i} \geq[\hat{\boldsymbol{x}}]_{i} \\ {[\boldsymbol{x}]_{i},} & \text { otherwise }\end{cases}
$$

It is clear that $\left|[\tilde{\boldsymbol{x}}]_{i}-\left[\boldsymbol{x}^{*}\right]_{i}\right| \leq 1 /(2 p)$ for $i=1,2, \ldots, n$. Then $\left\|\tilde{\boldsymbol{x}}-\boldsymbol{x}^{*}\right\|_{\infty}=\max _{1 \leq i \leq n}\left|[\tilde{\boldsymbol{x}}]_{i}-\left[\boldsymbol{x}^{*}\right]_{i}\right| \leq$ $1 /(2 p)$. Since $\tilde{\boldsymbol{x}}$ belongs to the grid,

$$
f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq f(\tilde{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq L\left\|\tilde{\boldsymbol{x}}-\boldsymbol{x}^{*}\right\|_{\infty} \leq L /(2 p)
$$

Let us define our goal

$$
\text { Find } \boldsymbol{x} \in B_{n} \text { such that } f(\boldsymbol{x})-f\left(\boldsymbol{x}^{*}\right)<\varepsilon
$$

Corollary 5.5 The number of iterations necessary for the problem (4) to achieve the above goal using the uniform grid method is at most

$$
\left(\left\lfloor\frac{L}{2 \varepsilon}\right\rfloor+2\right)^{n}
$$

Proof:
Take $p=\lfloor L /(2 \varepsilon)\rfloor+1$. Then, $p>L /(2 \varepsilon)$ and from the previous theorem, $f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq$ $L /(2 p)<\varepsilon$. Observe that we constructed $(p+1)^{n}$ points.

Consider the class of problems \mathcal{P} defined as follows:

Model:	$\min _{\boldsymbol{x} \in B_{n}} f(\boldsymbol{x})$
	$f(\boldsymbol{x})$ is ℓ_{∞}-Lipschitz continuous on B_{n}.
Oracle:	Only function values are available
Approximate solution:	Find $\overline{\boldsymbol{x}} \in B_{n}$ such that $f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right)<\varepsilon$

Theorem 5.6 For $\varepsilon<\frac{L}{2}$, the number of iterations necessary for the class of problems \mathcal{P} using any method which uses only function evaluations is always at least $\left(\left\lfloor\frac{L}{2 \varepsilon}\right\rfloor\right)^{n}$.

Proof:
Let $p=\left\lfloor\frac{L}{2 \varepsilon}\right\rfloor$ (which is ≥ 1 from the hypothesis).
Suppose that there is a method which requires $N<p^{n}$ calls of the oracle to solve the problem in \mathcal{P}.

Then, there is a point $\hat{\boldsymbol{x}} \in B_{n}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid 0 \leq[\boldsymbol{x}]_{i} \leq 1, i=1,2, \ldots, n\right\}$ where there is no test points in the interior of $B:=\{\boldsymbol{x} \mid \hat{\boldsymbol{x}} \leq \boldsymbol{x} \leq \hat{\boldsymbol{x}}+\boldsymbol{e} / p\}$ where $\boldsymbol{e}=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$.

Let $\boldsymbol{x}^{*}:=\hat{\boldsymbol{x}}+\boldsymbol{e} /(2 p)$ and consider the function $\bar{f}(\boldsymbol{x}):=\min \left\{0, L\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{\infty}-\varepsilon\right\}$. Clearly, \bar{f} is ℓ_{∞}-Lipschitz continuous with constant L and its global minimum is $-\varepsilon$. Moreover, $\bar{f}(\boldsymbol{x})$ is non-zero valued only inside the box $B^{\prime}:=\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{\infty} \leq \varepsilon / L\right\}$.

Since $2 p \leq L / \varepsilon, B^{\prime} \subseteq\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{\infty} \leq 1 /(2 p)\right\} \subseteq B$.
Therefore, $\bar{f}(\boldsymbol{x})$ is equal to zero to all test points of our method and the accuracy of the method is ε.

If the number of calls of the oracle is less than p^{n}, the accuracy can not be better than ε.
Theorem 5.6 supports the claim that the general optimization problem are unsolvable.
Example 5.7 Consider a problem defined by the following parameters. $L=2, n=10$, and $\varepsilon=0.01$.
lower bound $(L /(2 \varepsilon))^{n} \quad: 10^{20}$ calls of the oracle
computational complexity of the oracle : at least n arithmetic operations
total complexity $: 10^{21}$ arithmetic operations
CPU $: 1 \mathrm{GHz}$ or 10^{9} arithmetic operations per second
total time
one year $: \leq 3.2 \times 10^{7}$ seconds
we need $: \geq 10000$ years

- If we change n by $n+1$, the $\#$ of calls of the oracle is multiplied by 100 .
- If we multiply ε by 2 , the arithmetic complexity is reduced by 1000 .

We know from Corollary 5.5 that the number of iterations of the uniform grid method is at least $(\lfloor L /(2 \varepsilon)\rfloor+2)^{n}$. Theorem 5.6 showed that any method which uses only function evaluations requires at least $(\lfloor L /(2 \varepsilon)\rfloor)^{n}$ calls to have a better performance than ε. If for instance we take $\varepsilon=\mathcal{O}(L / n)$, these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an optimal method for the class of problems \mathcal{P}.

5.3 Steepest Descent Method

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a differentiable function on its domain.

\[

\]

We consider four strategies for the step-size h_{k} :

1. Constant Step

The sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ is chosen in advance. For example

$$
\begin{aligned}
h_{k} & :=h>0 \\
h_{k} & :=\frac{h}{\sqrt{k+1}}
\end{aligned}
$$

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ is chosen such that

$$
h_{k}:=\arg \min _{h \geq 0} f\left(\boldsymbol{x}_{k}-h \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right) .
$$

This choice is only theoretical since even for the one dimensional case, it is very difficult and expensive.

3. Goldstein-Armijo Rule

Find a sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ such that

$$
\begin{aligned}
\alpha\left\langle\boldsymbol{\nabla}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right\rangle & \leq f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right), \\
\beta\left\langle\boldsymbol{\nabla}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right\rangle & \geq f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right),
\end{aligned}
$$

where $0<\alpha<\beta<1$ are fixed parameters.
Since $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right)$,

$$
f\left(\boldsymbol{x}_{k}\right)-\beta h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \leq f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\alpha h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} .
$$

The acceptable steps exist unless $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right)$ is not bounded from below.

4. Barzilai-Borwein Step-Size ${ }^{1}$

Let us define $\boldsymbol{s}_{k-1}:=\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}$ and $\boldsymbol{y}_{k-1}:=\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right)$. Then, we can define the Barzilai-Borwein (BB) step sizes $\left\{h_{k}^{1}\right\}_{k=1}^{\infty}$ and $\left\{h_{k}^{2}\right\}_{k=1}^{\infty}$:

$$
\begin{aligned}
& h_{k}^{1}:=\frac{\left\|\boldsymbol{s}_{k-1}\right\|_{2}^{2}}{\left\langle\boldsymbol{s}_{k-1}, \boldsymbol{y}_{k-1}\right\rangle}, \\
& h_{k}^{2}:=\frac{\left\langle s_{k-1}, \boldsymbol{y}_{k-1}\right\rangle}{\left\|\boldsymbol{y}_{k-1}\right\|_{2}^{2}} .
\end{aligned}
$$

The first step-size is the one which minimizes the following secant condition $\left\|\frac{1}{h} s_{k-1}-\boldsymbol{y}_{k-1}\right\|_{2}^{2}$ while the second one minimizes $\left\|s_{k-1}-h \boldsymbol{y}_{k-1}\right\|_{2}^{2}$.

Now, consider the problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

where $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$, and $f(\boldsymbol{x})$ is bounded from below.
Let us evaluate the result of one step of the steepest descent method.
Consider $\boldsymbol{y}=\boldsymbol{x}-h \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})$. From Lemma 3.5,

$$
\begin{aligned}
f(\boldsymbol{y}) & \leq f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} \\
& =f(\boldsymbol{x})-h\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2}+\frac{h^{2} L}{2}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2}
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA Journal of Numerical Analysis, 8 (1988), pp. 141-148.

