
3.1 Exercises

1. Prove Lemma 3.6.

4 Optimality Conditions for Differentiable Functions on Rn

Let f : Rn → R be a differentiable function on Rn, x̄ ∈ Rn, and s be a direction in Rn such that
∥s∥2 = 1. Consider the local decrease (or increase) of f(x) along s:

∆(s) = lim
α→0

1

α
[f(x̄+ αs)− f(x̄)] .

Since f(x̄+ αs)− f(x̄) = α⟨∇f(x̄), s⟩+ o(∥αs∥2), we have ∆(s) = ⟨∇f(x̄), s⟩.
Using the Cauchy-Schwarz inequality −∥x∥2∥y∥2 ≤ ⟨x,y⟩ ≤ ∥x∥2∥y∥2,

∆(s) = ⟨∇f(x̄), s⟩ ≥ −∥∇f(x̄)∥2.

Choosing in particular the direction s̄ = −∇f(x̄)/∥∇f(x̄)∥2,

∆(s̄) = −
⟨
∇f(x̄),

∇f(x̄)

∥∇f(x̄)∥2

⟩
= −∥∇f(x̄)∥2.

Thus, the direction −∇f(x̄) is the direction of the fastest local decrease of f(x) at point x̄.

Theorem 4.1 (First-order necessary optimality condition) Let x∗ be a local minimum of
the differentiable function f(x). Then

∇f(x∗) = 0.

Proof:
Let x∗ be the local minimum of f(x). Then, there is r > 0 such that for all y with ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
Since f is differentiable on Rn,

f(y) = f(x∗) + ⟨∇f(x∗),y − x∗⟩+ o(∥y − x∗∥2) ≥ f(x∗).

Dividing by ∥y − x∗∥2, and taking the limit y → x∗,

⟨∇f(x∗), s⟩ ≥ 0, ∀s ∈ Rn, ∥s∥2 = 1.

Consider the opposite direction −s, and then we conclude that

⟨∇f(x∗), s⟩ = 0, ∀s ∈ Rn, ∥s∥2 = 1.

Choosing s = ei (i = 1, 2, . . . , n), we conclude that ∇f(x∗) = 0.

Remark 4.2 For the first-order sufficient optimality condition, we need convexity for the function
f(x).

Corollary 4.3 Let x∗ be a local minimum of a differentiable function f(x) subject to linear equality
constraints

x ∈ L := {x ∈ Rn | Ax = b} ̸= ∅,

where A ∈ Rm×n, b ∈ Rm, m < n.
Then, there exists a vector of multipliers λ∗ ∈ Rm such that

∇f(x∗) = ATλ∗.

8



Proof:
Consider the vectors ui (i = 1, 2, . . . , k) with k ≥ n−m which form an orthonormal basis of the

null space of A. Then, x ∈ L can be represented as

x = x(t) := x∗ +

k∑
i=1

tiui, t ∈ Rk.

Moreover, the point t = 0 is the local minimal solution of the function ϕ(t) = f(x(t)).
From Theorem 4.1, ϕ′(0) = 0. That is,

dϕ

dti
(0) = ⟨∇f(x∗),ui⟩ = 0, i = 1, 2, . . . , k.

Now there is t∗ ∈ Rk and λ∗ ∈ Rm such that

∇f(x∗) =
k∑

i=1

t∗iui +ATλ∗.

For each i = 1, 2, . . . , k,
⟨∇f(x∗),ui⟩ = t∗i = 0.

Therefore, we have the result.

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.4 Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, η ∈ R, either{
⟨c,x⟩ < η
Ax = b

has a solution x ∈ Rn, (1)

or 
{

⟨b,λ⟩ > 0

ATλ = 0
or{

⟨b,λ⟩ ≥ η

ATλ = c

 has a solution λ ∈ Rm, (2)

but never both

Proof:
Let us first show that if ∃x ∈ Rn satisfying (1), ̸ ∃λ ∈ Rm satisfying (2). Let us assume by

contradiction that ∃λ. Then ⟨λ,Ax⟩ = ⟨λ, b⟩ and in the homogeneous case it gives 0 = ⟨λ, b⟩ > 0
and in the non-homogeneous case it gives η > ⟨c,x⟩ = ⟨λ, b⟩ ≥ η. Both of cases are impossible.

Now, let us assume that ̸ ∃x ∈ Rn satisfying (1). If additionally ̸ ∃x ∈ Rn such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 ̸= λ ∈ Rm

which is orthogonal to all of these columns and ⟨b,λ⟩ ̸= 0. Selecting the correct sign, we constructed
a λ which satisfies the homogeneous system of (2). Now, if for all x such that Ax = b we have
⟨c,x⟩ ≥ η, it means that the minimization of the function f(x) = ⟨c,x⟩ subject to Ax = b has an
optimal solution x∗ with f(x∗) ≥ η (since ∃x ∈ Rn such that Ax = b, we can always assume that
m ≤ n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take λ = A−Tc. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.3, ∃λ ∈ Rm such that ATλ = c, and ⟨b,λ⟩ = ⟨x∗,ATλ⟩ = ⟨x∗, c⟩ ≥ η.

If f(x) is twice differentiable at x̄ ∈ Rn, then for y ∈ Rn, we have

∇f(y) = ∇f(x̄) +∇2f(x̄)(y − x̄) + o(∥y − x̄∥2),

where o(r) is such that limr→0 ∥o(r)∥2/r = 0 and o(0) = 0.
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Theorem 4.5 (Second-order necessary optimality condition) Let x∗ be a local minimum of
a twice continuously differentiable function f(x). Then

∇f(x∗) = 0, ∇2f(x∗) ⪰ O.

Proof:
Since x∗ is a local minimum of f(x), ∃r > 0 such that for all y ∈ Rn which satisfy ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
From Theorem 4.1, ∇f(x∗) = 0. Then

f(y) = f(x∗) +
1

2
⟨∇2f(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22) ≥ f(x∗).

And ⟨∇2f(x∗)s, s⟩ ≥ 0, ∀s ∈ Rn with ∥s∥2 = 1.

Theorem 4.6 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on Rn, and let x∗ satisfy the following conditions:

∇f(x∗) = 0, ∇2f(x∗) ≻ O.

Then, x∗ is a strict local minimum of f(x).

Proof:
In a small neighborhood of x∗, function f(x∗) can be represented as:

f(y) = f(x∗) +
1

2
⟨∇2f(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22).

Since o(r)/r → 0, there is a r̄ > 0 such that for all r ∈ [0, r̄],

|o(r)| ≤ r

4
λ1(∇2f(x∗)),

where λ1(∇2f(x∗)) is the smallest eigenvalue of the symmetric matrix ∇2f(x∗) which is positive.
Then

f(y) ≥ f(x∗) +
1

2
λ1(∇2f(x∗))∥y − x∗∥22 + o(∥y − x∗∥22).

Considering that r̄ < 1, |o(r2)| ≤ r2/4λ1(∇2f(x∗)) for r ∈ [0, r̄], finally

f(y) ≥ f(x∗) +
1

4
λ1(∇2f(x∗))∥y − x∗∥22 > f(x∗).

4.1 Exercises

1. Let f : Rn → R, g : Rn → Rm continuously differentiable functions and h ∈ Rm. Define the
following optimization problem. 

minimize f(x)
subject to g(x) = h

x ∈ Rn

Write the Karush-Kuhn-Tucker (KKT) conditions corresponding to the above problem.

2. In view of Theorem 4.6, find a twice continuously differentiable function on Rn which satisfies
∇f(x∗) = 0, ∇2f(x∗) ⪰ O, but x∗ is not a local minimum of f(x).

3. Let f : Rn → R be a continuous differentiable and convex function. If x∗ ∈ Rn is such that
∇f(x∗) = 0, then show that x∗ is a global minimum for f(x).
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5 Algorithms for Minimizing Unconstrained Functions

5.1 General Minimization Problem and Terminologies

Definition 5.1 We define the general minimization problem as follows
minimize f(x)
subject to fj(x) & 0, j = 1, 2, . . . ,m

x ∈ S,
(3)

where f : Rn → R, fj : Rn → R (j = 1, 2, . . . ,m), the symbol & could be =, ≥, or ≤, and S ⊆ Rn.

Definition 5.2 The feasible set Q of (3) is

Q = {x ∈ S | fj(x) & 0, (j = 1, 2, . . . ,m)}.

In the following items we assume S ≡ Rn.

• If Q ≡ Rn, (3) is a unconstrained optimization problem.

• If Q ⊊ Rn, (3) is a constrained optimization problem.

• If all functionals f(x), fj(x) are differentiable, (3) is a smooth optimization problem.

• If one of functionals f(x), fj(x) is non-differentiable, (3) is a non-smooth optimization prob-
lem.

• If all constraints are linear fj(x) = ⟨aj ,x⟩ + bj (j = 1, 2, . . . ,m), (3) is a linear constrained
optimization problem.

– In addition, if f(x) is linear, (3) is a linear programming problem.

– In addition, if f(x) is quadratic, (3) is a quadratic programming problem.

• If f(x), fj(x) (j = 1, 2, . . . ,m) are quadratic, (3) is a quadratically constrained quadratic
programming problem.

Definition 5.3 x∗ is called a global optimal solution of (3) if f(x∗) ≤ f(x), ∀x ∈ Q. Moreover,
f(x∗) is called the global optimal value. x∗ is called a local optimal solution of (3) if there exists
an open ball B(x∗, ε) := {x ∈ Rn | ∥x − x∗∥2 < ε} such that f(x∗) ≤ f(x), ∀x ∈ B(x∗, ε) ∩ Q.
Moreover, f(x∗) is called a local optimal value.

5.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-
dimensional box.{

minimize f(x)
subject to x ∈ Bn := {x ∈ Rn | 0 ≤ [x]i ≤ 1, i = 1, 2, . . . , n}. (4)

To be coherent, we use the ℓ∞-norm:

∥x∥∞ = max
1≤i≤n

|[x]i|.

Let us also assume that f(x) is Lipschitz continuous on Bn:

|f(x)− f(y)| ≤ L∥x− y∥∞, ∀x,y ∈ Bn.

Let us define a very simple method to solve (4), the uniform grid method.
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