

Purpose of This Course

- To learn parallel computing practically
 - Lecture + Practice
 - We use the TSUBAME supercomputer from this room
- Plan
 - Lecture about libraries/languages for parallel computing
 - OpenMP
 - MPI
 - CUDA (a programming environment for GPUs)

Materials, announcements will be found at OCW web page

- <u>http://ocw.titech.ac.jp</u>
- → Search "practical parallel computing"

Required Knowledge

- This course uses C language as basis
 - Pointers, malloc/free
 - Relation between pointers and arrays
 - Knowledge of Pthread, Java threads is useful, but not required
- Basic Linux commands
 - Is, cp, mkdir...
 - Compilation, make would be helpful

Overview and Credits

- Part 1: OpenMP for shared memory parallel programming
- Part 2: MPI for distributed memory parallel programming
- Part 3: GPU programming

Your score will be determined by the followings

- There is homework for each part. Submission of reports for 2 parts is required
 - The due date will be about two weeks after each part finished
 - (You can submit reports more)
- Also attendances will be considered

講義の流れと単位認定

- Part 1: OpenMPによる共有メモリ並列プログラミング
- Part 2: MPIによる分散メモリ並列プログラミング
- Part 3: GPUプログラミング

下記により採点・単位認定

- 各パートで課題を出す。2つのパートのレポート提出を必須 とする
 - 〆切は、各パート終了の約2週間後
 - •(それ以上のレポート提出してもよい)
- 出席点

What are supercomputers?

World No.1

What are Supercomputers used for?

Simulations and Big-data analysis are important for area of science, engineering, social...

Difference with "Normal" Computers

- SCs are computers that support much faster and much larger computation than normal computers
 - Speeds are often compared in "Flops": The number of possible add/subtract/multiplication operations per second

Development of Supercomputers (1) (from www.top500.org) Linpack benchmark speed (Gflops)												
Jun-93	CM-5/1024	60	LANL	US		Nov-03	↓	35860	Ļ	Japan		
Nov-93	Numerical Wind		AL	Japan		Jun-04	\downarrow	35860	Ļ	Japan		
Jun-94	XP/S14		ps _{NL}	US		Nov-04	BlueGene/L beta	70720	IBM/DOE	US		
Nov-94	Numerical Wind Tunnel		IAL	Japan		Jun-05	BlueGene/L	136800	DOE/NNSA/LLNL	US		
Jun-95	↓			Japan		Nov-05	\downarrow	280600	Ļ	US		
Nov-95	↓	170		Japan		Jun-06	\downarrow	280600	Ļ	US		
Jun-96 SR2201 (1221										US		
Nov-96 CP-PACE 500 000x Factor in 20 years									↓	US		
Jun-97	ASCI	$\overline{0,0}$		40					↓	US		
Nov-97	\downarrow	1338	\downarrow			Jun-08	RoadRunner	1026000	Ļ	US		
Jun-98	\downarrow	1338	↓ \	,		Nov-08	\downarrow	1105000	Ļ	US		
Nov-98	Ļ	1338	Ļ			Jun-09	\downarrow	1105000	Ļ	US		
Jun-99	Ļ	2121	Ļ	US		<u>v-09</u>	Jaguar	1759000	ORNL	US		
Nov-99	Ļ	2379	Ļ	us 🔪		10	\downarrow	1759000	Ļ	US		
Jun-00	ļ	2379	 	us	N	N	Tianhe-1A	2566000	NSC	China		
Nov-00	ASCI White	4938		US	`	A	K pmputer	8162000	RIKEN AICS	Japan		
.lun-01		7226		US		N	↓	10510000	Ļ	Japan		
Nov-01	Ļ	7226	¥↓	US			equoia	16324000	DOE/NNSA/LLNL	US		
Jun-02	Earth-Simulator	35860	ES Center	Japan		Nov-12	33.9PFI	ops	DOE/SC/ORNL	US		
Nov-02	\downarrow	35860	↓	Japan		Jun-13	Hanne-2	33863000	NSC	China		
Jun-03	\downarrow	35860	\downarrow	Japan		Nov-13	\downarrow	33863000	↓	China		

Development of Supercomputers (2) (from www.top500.org)

^Derformance

Why are Speed & Size Important?

- For simulation & big-data analysis, large number of computations should be done speedily
- ⇒Want to obtain forecast of tomorrow weather by tomorrow (of course!)
- ⇒Want to develop and sell new medicine (than competitors)
- For simulation & big-data analysis, storing large scale data is needed
- \Rightarrow Want to make discovery by comparing mass genome data
- ⇒Want to visualize motion of molecules for every time step

How is Weather Forecast done?

Motions of air, clouds, water are expressed by differential equations

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v}\cdot\nabla)\boldsymbol{v} = -\frac{1}{\rho}\nabla p + \nu\Delta\boldsymbol{v} - g\hat{\boldsymbol{z}}$$

But no analytical solution for them, generally

- ⇒ Instead, space and time are discretized
- The space is divided into small grids, expressed as an array
 ⇒ Each array element should be computed
- The time is divided into time steps

 \Rightarrow After a time step is computed, we go to next step, and so on

Why is Speed Important?

- Since we have to compute all points for every time step, computational complexity is
 - O(x-size × y-size × z-size × time-steps)

For better prediction, we need to make grid finer (arrays larger)

If resolution is 10x higher, we need 10000x computations! (10x10x10x10)

 \rightarrow In future, we are going to 50m grid...

Why are SCs Fast?

- Do SCs have 10THz CPUs? → No!!
- Basic idea: If multiple workers work cooperatively and simultaneously, they can do great tasks than a single worker ⇒Parallel execution

Multiple workers are working together → fast!

Hierarchical SC Structure

- System = Many nodes (=computers) + External storage
 - Parts are connected by Network
- Node = Several processors (CPU etc.)
 - + Memory + Local storage
 - Parts are connected by PCI-e, QPI, etc.
- Processor = Several cores + Cache

Structure of TSUBAME2 and K

System	1408 nodes	5.73PFlops	88000 nodes	11.26PFlops	
Node	2 CPUs + 3 GPUs	140GFlops + 3930GFlops = 4070GFlops	1 CPU	128GFlops	
Processor	CPU: 6 cores GPU: 14 SMXs	CPU: 70GFlops GPU: 1310GFlops	8 cores	128GFlops	
Core	CPU core: 2.93G GPU SMX: 0.73GF	Hz x 4 = 11.7GFlops Iz x 128 = 93.4GFlops	2GHz x 8 = 16GFlops		

GPUs are focused in Part 3 In this course

• "TSUBAME2.5 Guidance" is explained here

TSUBAME Group in This Course

- Students of this course will become members of "t2gppcomp" TSUBAME group
 - Use t2sub command with "-W grouplist=t2g-ppcomp"

Please do the following by Apr 20 (earlier is better)

- Please make your account on TSUBAME2
 - Tokyo Tech Portal (portal.titech.ac.jp) → TSUBAME2 Portal
- Please send an e-mail to ppcomp@el.gsic.titech.ac.jp

Subject: TSUBAME2 ppcomp account To: ppcomp@el.gsic.titech.ac.jp

Lab name/Department name

School year

Name

Your TSUBAME account name

Note in This Course

Since each student logins to TSUBAME from this room,

- We recommend you to bring your laptop PC
 - If it is difficult, please practice in home
- Please install SSH terminal software
 - For Windows PC, Putty or Teraterm+SSH will work
- Make sure use can connect to Wifi network
 - We recommend "TokyoTech" Wifi network

Contact/ Information on the Course

- About this course
 - ppcomp@el.gsic.titech.ac.jp (Endo)
- Tokyo Tech OCW
 - http://ocw.titech.ac.jp
 - → Search with "Practical Parallel Computing"School of 「実践的並列コンピューティング」で検索

