
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. 13

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming with CUDA
(2)

Parallelization on CUDA
 In order to utilize speed of GPUs, we need to use

multiple threads for parallelization
 “inc_seq” sample program only use 1 thread
 The next sample is “inc_par”
Available at ~endo-t-ac/ppcomp/17/inc_par

with 1 thread With multiple threads

Parallelization on CUDA (2)

cf) func <<< 4, 3 >>> (); 12 threads

3

A thread blockA grid A thread

Number of thread blocks
= gridDim

Number of threads per block
= blockDim

OpenMP: Specify 1 number for number of threads
(OMP_NUM_THREADS)
CUDA: Specify 2 numbers (at least) for number of threads,
when calling a GPU kernel function

To See Who am I
 By reading the following special variables, each thread can

see its thread ID, etc.
 My ID

 blockIdx.x: Index of the block the thread belong to (≧0)
 threadIdx.x: Index of the thread (inside the block) (≧0)

 Number of thread/blocks
 gridDim.x: How many blocks are running
 blockDim.x: How many threads (per block) are running

4

Note: In order to see the entire sequential ID, we
should compute

blockIdx.x * blockDim.x + threadIdx.x

Differences between
OpenMP Threads & CUDA Threads

5

OpenMP threads CUDA threads
Run on CPU GPU

When the number
is specified

Environment var
(OMP_NUM_THREADS)

When GPU kernel is called

How the number
is specified

1 number 2 numbers at least
6 numbers at most (explained later)

“Desirable” thread
numbers

Threads ≦ CPU cores gridDim ≧ SMXs (=14 on K20X)
blockDim ≧ CUDA cores per SMX
(=192 on K20X)

Parallel “inc_par” Sample

6

:
#define BS (8)

__global__ void inc(int *array, int len)
{

int id = blockIdx.x * blockDim.x +
threadIdx.x;

if (id >= len) return;
array[id]++; // ← we can omit loop
return;

}

int main(int argc, char *argv[])
{

:
inc<<<(N+BS-1)/BS, BS>>>(arrayD, N);

:
}

:

__global__ void inc(int *array, int len)
{

int i;
for (i = 0; i < len; i++) {

array[i]++;
}
return;

}

int main(int argc, char *argv[])
{

:
inc<<<1, 1>>>(arrayD, N);

:
}

inc_seq inc_par

Ideas behind inc_par
 It is ok to make >1000, >10000 threads on CUDA
 We use N threads for N elements computation

inc<<<N/BS, BS>>>(.....);

gridDim blockDim (=8 in this sample)

Note: <<<N, 1>>> or <<<1, N>>> also works, but inefficient

Note: To support the case N is indivisible by BS,
we actually use <<<(N+BS-1)/BS, BS>>>
 “Extra” threads (id≧N) should not work
 if (id >= len) return;

 1 element for 1 thread No need of “for” loop in this
sample

Rules for Memory/Variables
 Variables declared in GPU kernel functions are

“thread private”

 Device memory is shared by all CUDA threads
 Be careful to avoid race condition problem (multiple

threads write same address)
 Reading same address is ok

 Do not forget host memory and device memory
are distributed

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

9

“mm” sample: Matrix Multiply
(Revisited, related to [G2])

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B

 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format
 Execution:./mm [m] [n] [k]

CA

B

m

k

k

n

CUDA version available at ~endo-t-ac/ppcomp/17/mm-cuda/

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

How We Parallelize Computation

OpenMP
Parallelize column-loop
(or row-loop)

10

A

B

C

j

In mm, we can compute different C elements in parallel
• On the other hand, it is harder to parallelize dot-product loop

CUDA
 We can create too many threads
 M x N threads are ok!!

 Parallelize row&column of C
 1 thread computes 1 element

B

CA

※ This is not the unique way

Creating Many Threads
 Now we want to make M*N (may be >1,000,000) threads

 <<<(M*N)/BS, BS>>> is ok, but…
 On CUDA, gridDim and blockDim may have “dim3” type

(3D vector structure with x, y, z fields)

11

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); 48 threads

※ This example is the case of 2D (Z dimensions are 1)

Thread IDs in multi-dimensional cases

 For every thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1

 For the thread with blue mark,
blockIdx.x=1, blockIdx.y=1, blockIdx.z=0
threadIdx.x=2, threadIdx.y=0, threadIdx.z=0

12

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

Threads in mm-cuda Sample
 The total number of threads are M*N
 How do we determine gridDim, blockDim?

 <<<M, N>>> does not work for constraints explained later

 Here, we use fixed blockDim (x=16, y=16 256 threads per block)
 gridDim is computed from M, N

 x is mapped to column index, y is mapped to row index (※)

13

M

N

C

N

M

※ reverse mapping is possible,
but inefficient (in the next class)

Codes in mm-cuda

14

matmul_kernel<<<dim3(m / BS, n / BS, 1), dim3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,
:

j = blockIdx.y * blockDim.y + threadIdx.y;
i = blockIdx.x * blockDim.x + threadIdx.x;

: This thread computes Cij

gridDim blockDim

Limitations on Number of
Threads

 Limitation depends on GPU types. Refer Appendix G in
Programming Guide
 http://docs.nvidia.com/cuda/
 K20X has Compute capability 3.5

15

func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

≦ 231-1
≦ 65535 ≦ 1024 ≦64

Also, bx*by*bz must be ≦1024

BlockDim has severe limitation
That is why mm-cuda uses fixed BlockDim (16x16x1)

http://docs.nvidia.com/cuda/

How We Put Data
in mm-cuda Sample

 Consider host memory on CPU and
device memory on GPU

 Consideration
 When computed, all of A, B, C should be

on device memory
 Where are they initialized? CPU or GPU?
 In this sample, on CPU

 Current design
 After initialization of A, B, C, we transfer

them from CPU to GPU (by cudaMemcpy)
 After computation, we transfer C to CPU

16

CPU GPU

Computation

Transfer
A, B, C

Transfer
C

Initialization

Consideration of Computation
Speed (related to [G2])

 Computation “speed” is basically
(Computation-amount / Time)

 Should “Time” include transfer time?
 It depends on context. What do we
want to measure?

17

CPU GPU

Computation

Transfer

Transfer

t1
t2

mm-cuda prints both t1 and t2
t1 ≒ cMNK
t2 ≒ t1 + d(MK+KN+2MN)
• c,d is constants that depend on architecture
• This omits “latency”

Notes in Time Measurement

 clock(), gettimeofday() must be called from CPU
 For accurate measurement, we should call

cudaDeviceSynchronize() before measurement
 Actually GPU kernel function call and

cudaMemcpy(HostToDevice) are non-blocking
 “non-blocking” like MPI_Isend, MPI_Irecv

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

19

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

Due Date
May 8

Due Date
May 29

Due Date
June 12

20

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 12 (Monday)

[G1] Parallelize “diffusion” sample program by CUDA
(explained later).

[G2] Evaluate speed of “mm-cuda” in detail.
[G3] (Freestyle) Parallelize any program by CUDA.

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Report should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME2
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME2 are ok, if available

22

Next Class:
 GPU Programming (3)
 Optimization techniques in GPU programming
 Discussion on “diffusion” on CUDA
 related to assignment [G1]

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. 13
	Parallelization on CUDA
	Parallelization on CUDA (2)
	To See Who am I
	Differences between �OpenMP Threads & CUDA Threads
	Parallel “inc_par” Sample
	Ideas behind inc_par
	Rules for Memory/Variables
	“mm” sample: Matrix Multiply�(Revisited, related to [G2])
	How We Parallelize Computation
	Creating Many Threads
	Thread IDs in multi-dimensional cases
	Threads in mm-cuda Sample
	Codes in mm-cuda
	Limitations on Number of Threads
	How We Put Data�in mm-cuda Sample
	Consideration of Computation Speed (related to [G2])
	Notes in Time Measurement
	Assignments in this Course
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:

