
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. 11

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (4)

Considering Performance of
MPI Programs
(Simplified) Execution time of an MPI program =

Computation time
+ Communication time
+ Others

2

Comp

Comm

Comp

Comm

Behavior
of stencil

computations
on MPI Comp

Comm

Comp

Comm

A time
step

Comp

Comm

Comp

Comm

Comp

Comm

Comp

Comm

← including memory access

← load imbalance, I/O…
← including congestion

Computation Time &
Communication Time (1)
How are they determined? (very simplified discussion)
1. Aspect of software

3

Computation time Communication time
• Longer if computation

costs are larger
• O(mnk/p) in matmul,
• O(NX NY NT/p) in

diffusion

• Longer if communication
costs are larger
• O(mk) in memory

reduced matmul
• O(NX NT) in diffusion

per process per process

Computation Time &
Communication Time (2)

4

Computation time Communication time
• Shorter if processor speed

is faster
• 140GFlops per node on

TSUBAME2
• Actually, memory access

costs are important

• Shorter if network speed
is faster
• 80Gbps per node on

TSUBAME2

2. Aspect of hardware

2.93GFlops x 4FP
x 6cores x 2CPUs
= 140GFlops

40Gbps
QDR Infiniband

40Gbps x 2
=80Gbps

Parameters for Network Speed
What parameters describes network speed?
 Bandwidth：Data amounts that network can transport per

unit time Larger is better
 bps: X bits per second
 B/s: X Bytes per second
 On TSUBAME2, 80Gbps = 10GB/s per node

 Network latency：Time to transport minimum data (1bit,
for example) Smaller is better
 On TSUBAME2, <10us

※ Additionally, communication time may suffer from effects of network
topology: how nodes/switches are connected to each other

5

Bandwidth and Latency

6

T = M / B + L

T: Communication time
M: Data size
B: Bandwidth
L: Network latency

※ In some contexts, T, not L, may be called “latency”

Time

Rank 0 Rank 1

L

M/B

※ Be aware of difference between
“Byte” and “bit”: 1Byte=8bit

Is “latency” reciprocal of “bandwidth”?
 No, because data are transported successfully

Why L (Latency) > 0?
1. Overhead when data passes network switches

2. Software overhead
 Cf) Socket library, MPI library performs data copy

３. Transfer speed of data cannot exceed speed of light
(3x108 m/s)

Considering T = M / B + L,
batching communication may improve communication time

cf) Sending 1Gbytes at once is much faster than
sending 1Kbytes for 1,000,000 times

How to Improve Performance
of MPI Programs?
 Reduce computation time

 Reduce computation amount
 Using cache memory efficiently

 Reduce communication time
 Reduce communication amount
 Batch communication
 Using collective communication is also good

 Reduce other time
 Improve load balancing
 Reconsider I/O

… And overlap computation and communication

8

Idea of Overlapping

T=TN+TP

9

Comm

Comp

Comm

Comp

Without overlap With overlap

Comp
2

Comp
1

Comp
2

Comp
1

Start
Comm

Finish
Comm

TN

TP

If “some computations” do not require contents
of message, we may start them beforehand

TP is divided into
 TP1: can be overlapped
 TP2: cannot be overlapped
T=max(TN,TP1)+TP2

10

Overlapping in Stencil Computation
(related to [M1], but not requied)

Rows C, D, E do not need
data from other processes
They can be computed
without waiting for finishing
communication

A
B
C
D
E
F
G

When we consider data dependency in detail, we can find
computations that do not need data from other processes

On the other hand, rows
B, F need received data

For such purposes, non-blocking communications (MPI_Isend,
MPI_Irecv…) are helpful

Implementation without
Overlapping

11

for (t = 0; t < nt; t++) {
Start Send B to rank-1, Start Send F to rank+1
(MPI_Isend)

Start Recv A from rank-1, Start Recv G from rank-1
(MPI_Irecv)

Waits for finishing all communications (MPI_Wait)
Compute rows B--F
Switch old and new arrays

}

T=TN+TP

TN

TP

Implementation with
Overlapping

12

for (t = 0; t < nt; t++) {
Start Send B to rank-1, Start Send F to rank+1
(MPI_Isend)

Start Recv A from rank-1, Start Recv G from rank-1
(MPI_Irecv)

Compute rows C--E
Waits for finishing all communications (MPI_Wait)
Compute rows B, F
Switch old and new arrays

}

T=max(TN,TP1)+TP2

computations are
divided

Another Improvement:
Reducing Communication Amounts

13

 Comp: O(mn/p)
 Comm: O(n)
per 1 process, 1 iteration

Multi-dimensional division may reduce communication

 Comp: O(mn/p)
 Comm: O((m+n)/p1/2)
per 1 process, 1 iteration
 Comm is reduced

Each process communicate with
upper/lower/right/left processes

NY

NX

Multi-dimensional division and
Non-contiguous data (1)
 MD division may need communication of non-

contiguous data

14

Comm
In Row-major format,
we need send/recv of non-
contiguous data for
left/right bordersComm Comm

Comm

But “fragmented communication” degrades
performance! (since Latency > 0)
How do we do?

Multi-dimensional division and
Non-contiguous data (2)
Solution (1):
Before sending, copy non-contiguous data into
another contiguous buffer
After receiving, copy contiguous buffer to non-
contiguous area
Solution (2):
Use MPI_Datatype
 Skipped in the class; you may use Google :-p

15

It is Better to Use Collective
Communications if Appropriate

16

0

100

200

300

400

500

0 10 20 30 40

Ti
m

e
(m

s)

Number of Processes

64MB message

Send&Recv

MPI_Bcast

0

100

200

300

400

500

0 20 40 60 80
Ti

m
e

(m
s)

Message size (MB)

32 processes

Send&Recv

MPI_Bcast

 In most cases, MPI_Bcast is faster

faster faster

 Comparing MPI_Bcast and MPI_Send&Recv
In the graph, rank 0 called MPI_Send for p-1 times to other processes

Why are Collective
Communications Fast?

 Since Scalable communication algorithms are used
inside MPI library

(p-1)(M/B+L)
 Slowest

(log p)(M/B+L)

Flat tree algorithm Binomial tree algorithm

One of Scalable “Bcast”
Algorithms
 Scatter&Allgather algorithm

 Message is divided into p parts
 Better than “binomial tree” if M is larger

18

pL + M/B +
(log p)L + M/B

R. Thakur and W. Gropp.
Improving the performance of
collective operations in mpich.
EuroPVM/MPI conference,
2003.

 We have finished
 Part 1: OpenMP for shared memory parallel

programming
 Part 2: MPI for distributed memory parallel

programming

 Why are “parallel programs” slower than
expectation?
 Ideal: “p times speed-up with p processor cores”

19

Too Many Factors that Limit
Performance of Programs
 Factors in algorithm

 Load imbalance between threads, processes
 Bottlenecks due to mutual exclusions
 Communication costs

 Factors related to OpenMP/MPI system
 Too many parallel region
 Too many message

 Factors related to hardware
 Memory access costs
 Congestion in network

and many, many factors

20

How Should We Tackle
Performance Limiting Factors?

 It is important to know “why it is slow now”
 Consider what should be measured in order to specify

current problem
 Measuring time part by part may be helpful
 Comparing computation time and communication time separately
 Comparing 1-node performance and multi-node performance

may be helpful
 It is good to use knowledge of computer hardware

21

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

22

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

Due Date
May 8

Due Date
May 29

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see Apr 27 slides or OCW-i.

23

24

Next Class
 Part 3 starts
 GPU parallel programming using CUDA

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. 11
	Considering Performance of MPI Programs
	Computation Time &�Communication Time (1)
	Computation Time &�Communication Time (2)
	Parameters for Network Speed
	Bandwidth and Latency
	Why L (Latency) > 0?
	How to Improve Performance of MPI Programs?
	Idea of Overlapping
	Overlapping in Stencil Computation�(related to [M1], but not requied)
	Implementation without Overlapping
	Implementation with Overlapping
	Another Improvement:�Reducing Communication Amounts
	Multi-dimensional division and Non-contiguous data (1)
	Multi-dimensional division and Non-contiguous data (2)
	It is Better to Use Collective Communications if Appropriate
	Why are Collective Communications Fast?
	One of Scalable “Bcast” Algorithms
	スライド番号 19
	Too Many Factors that Limit�Performance of Programs
	How Should We Tackle Performance Limiting Factors?
	Assignments in this Course
	Assignments in MPI Part�(Abstract)
	Next Class

