
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. 11

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (4)

Considering Performance of
MPI Programs
(Simplified) Execution time of an MPI program =

Computation time
+ Communication time
+ Others

2

Comp

Comm

Comp

Comm

Behavior
of stencil

computations
on MPI Comp

Comm

Comp

Comm

A time
step

Comp

Comm

Comp

Comm

Comp

Comm

Comp

Comm

← including memory access

← load imbalance, I/O…
← including congestion

Computation Time &
Communication Time (1)
How are they determined? (very simplified discussion)
1. Aspect of software

3

Computation time Communication time
• Longer if computation

costs are larger
• O(mnk/p) in matmul,
• O(NX NY NT/p) in

diffusion

• Longer if communication
costs are larger
• O(mk) in memory

reduced matmul
• O(NX NT) in diffusion

per process per process

Computation Time &
Communication Time (2)

4

Computation time Communication time
• Shorter if processor speed

is faster
• 140GFlops per node on

TSUBAME2
• Actually, memory access

costs are important

• Shorter if network speed
is faster
• 80Gbps per node on

TSUBAME2

2. Aspect of hardware

2.93GFlops x 4FP
x 6cores x 2CPUs
= 140GFlops

40Gbps
QDR Infiniband

40Gbps x 2
=80Gbps

Parameters for Network Speed
What parameters describes network speed?
 Bandwidth：Data amounts that network can transport per

unit time Larger is better
 bps: X bits per second
 B/s: X Bytes per second
 On TSUBAME2, 80Gbps = 10GB/s per node

 Network latency：Time to transport minimum data (1bit,
for example) Smaller is better
 On TSUBAME2, <10us

※ Additionally, communication time may suffer from effects of network
topology: how nodes/switches are connected to each other

5

Bandwidth and Latency

6

T = M / B + L

T: Communication time
M: Data size
B: Bandwidth
L: Network latency

※ In some contexts, T, not L, may be called “latency”

Time

Rank 0 Rank 1

L

M/B

※ Be aware of difference between
“Byte” and “bit”: 1Byte=8bit

Is “latency” reciprocal of “bandwidth”?
 No, because data are transported successfully

Why L (Latency) > 0?
1. Overhead when data passes network switches

2. Software overhead
 Cf) Socket library, MPI library performs data copy

３. Transfer speed of data cannot exceed speed of light
(3x108 m/s)

Considering T = M / B + L,
batching communication may improve communication time

cf) Sending 1Gbytes at once is much faster than
sending 1Kbytes for 1,000,000 times

How to Improve Performance
of MPI Programs?
 Reduce computation time

 Reduce computation amount
 Using cache memory efficiently

 Reduce communication time
 Reduce communication amount
 Batch communication
 Using collective communication is also good

 Reduce other time
 Improve load balancing
 Reconsider I/O

… And overlap computation and communication

8

Idea of Overlapping

T=TN+TP

9

Comm

Comp

Comm

Comp

Without overlap With overlap

Comp
2

Comp
1

Comp
2

Comp
1

Start
Comm

Finish
Comm

TN

TP

If “some computations” do not require contents
of message, we may start them beforehand

TP is divided into
 TP1: can be overlapped
 TP2: cannot be overlapped
T=max(TN,TP1)+TP2

10

Overlapping in Stencil Computation
(related to [M1], but not requied)

Rows C, D, E do not need
data from other processes
They can be computed
without waiting for finishing
communication

A
B
C
D
E
F
G

When we consider data dependency in detail, we can find
computations that do not need data from other processes

On the other hand, rows
B, F need received data

For such purposes, non-blocking communications (MPI_Isend,
MPI_Irecv…) are helpful

Implementation without
Overlapping

11

for (t = 0; t < nt; t++) {
Start Send B to rank-1, Start Send F to rank+1
(MPI_Isend)

Start Recv A from rank-1, Start Recv G from rank-1
(MPI_Irecv)

Waits for finishing all communications (MPI_Wait)
Compute rows B--F
Switch old and new arrays

}

T=TN+TP

TN

TP

Implementation with
Overlapping

12

for (t = 0; t < nt; t++) {
Start Send B to rank-1, Start Send F to rank+1
(MPI_Isend)

Start Recv A from rank-1, Start Recv G from rank-1
(MPI_Irecv)

Compute rows C--E
Waits for finishing all communications (MPI_Wait)
Compute rows B, F
Switch old and new arrays

}

T=max(TN,TP1)+TP2

computations are
divided

Another Improvement:
Reducing Communication Amounts

13

 Comp: O(mn/p)
 Comm: O(n)
per 1 process, 1 iteration

Multi-dimensional division may reduce communication

 Comp: O(mn/p)
 Comm: O((m+n)/p1/2)
per 1 process, 1 iteration
 Comm is reduced

Each process communicate with
upper/lower/right/left processes

NY

NX

Multi-dimensional division and
Non-contiguous data (1)
 MD division may need communication of non-

contiguous data

14

Comm
In Row-major format,
we need send/recv of non-
contiguous data for
left/right bordersComm Comm

Comm

But “fragmented communication” degrades
performance! (since Latency > 0)
How do we do?

Multi-dimensional division and
Non-contiguous data (2)
Solution (1):
Before sending, copy non-contiguous data into
another contiguous buffer
After receiving, copy contiguous buffer to non-
contiguous area
Solution (2):
Use MPI_Datatype
 Skipped in the class; you may use Google :-p

15

It is Better to Use Collective
Communications if Appropriate

16

0

100

200

300

400

500

0 10 20 30 40

Ti
m

e
(m

s)

Number of Processes

64MB message

Send&Recv

MPI_Bcast

0

100

200

300

400

500

0 20 40 60 80
Ti

m
e

(m
s)

Message size (MB)

32 processes

Send&Recv

MPI_Bcast

 In most cases, MPI_Bcast is faster

faster faster

 Comparing MPI_Bcast and MPI_Send&Recv
In the graph, rank 0 called MPI_Send for p-1 times to other processes

Why are Collective
Communications Fast?

 Since Scalable communication algorithms are used
inside MPI library

(p-1)(M/B+L)
 Slowest

(log p)(M/B+L)

Flat tree algorithm Binomial tree algorithm

One of Scalable “Bcast”
Algorithms
 Scatter&Allgather algorithm

 Message is divided into p parts
 Better than “binomial tree” if M is larger

18

pL + M/B +
(log p)L + M/B

R. Thakur and W. Gropp.
Improving the performance of
collective operations in mpich.
EuroPVM/MPI conference,
2003.

 We have finished
 Part 1: OpenMP for shared memory parallel

programming
 Part 2: MPI for distributed memory parallel

programming

 Why are “parallel programs” slower than
expectation?
 Ideal: “p times speed-up with p processor cores”

19

Too Many Factors that Limit
Performance of Programs
 Factors in algorithm

 Load imbalance between threads, processes
 Bottlenecks due to mutual exclusions
 Communication costs

 Factors related to OpenMP/MPI system
 Too many parallel region
 Too many message

 Factors related to hardware
 Memory access costs
 Congestion in network

and many, many factors

20

How Should We Tackle
Performance Limiting Factors?

 It is important to know “why it is slow now”
 Consider what should be measured in order to specify

current problem
 Measuring time part by part may be helpful
 Comparing computation time and communication time separately
 Comparing 1-node performance and multi-node performance

may be helpful
 It is good to use knowledge of computer hardware

21

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

22

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

Due Date
May 8

Due Date
May 29

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see Apr 27 slides or OCW-i.

23

24

Next Class
 Part 3 starts
 GPU parallel programming using CUDA

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. 11
	Considering Performance of MPI Programs
	Computation Time &�Communication Time (1)
	Computation Time &�Communication Time (2)
	Parameters for Network Speed
	Bandwidth and Latency
	Why L (Latency) > 0?
	How to Improve Performance of MPI Programs?
	Idea of Overlapping
	Overlapping in Stencil Computation�(related to [M1], but not requied)
	Implementation without Overlapping
	Implementation with Overlapping
	Another Improvement:�Reducing Communication Amounts
	Multi-dimensional division and Non-contiguous data (1)
	Multi-dimensional division and Non-contiguous data (2)
	It is Better to Use Collective Communications if Appropriate
	Why are Collective Communications Fast?
	One of Scalable “Bcast” Algorithms
	スライド番号 19
	Too Many Factors that Limit�Performance of Programs
	How Should We Tackle Performance Limiting Factors?
	Assignments in this Course
	Assignments in MPI Part�(Abstract)
	Next Class

