
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. 8

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (2)

“diffusion” Sample Program (1)
(Revisited)

 Density of ink in each point vary according to
time Simulated by computers

 Stencil computation

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

3

“diffusion” Sample Program (2)
(Revisited)

 Execution：./diffusion [nt]
 nt: Number of time steps
 nx, ny: Space grid size

 nx=8192, ny=8192 (Fixed. See the code)
 How can we make them variables? (See mm sample)

 Compute Complexity：O(nx×ny×nt)

Available at ~endo-t-ac/ppcomp/17/diffusion/

Data Structures in diffusion
(Revisited)
 Space to be simulated are divided into grids, and

expressed by arrays (2D in this sample)
NX

NY

Time step t=0 t=1 t=20

• Array elements are computed via timestep, by using
“previous” data

Double Buffering Technique
(Revisited)
 A simple way is to make arrays for all time steps, but it

consumes too much memory!
 It is sufficient to have “current” array and “previous” array.

“Double buffers” are used for many times
An Array for
“even” steps

An Array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];

6

How Do We Parallelize
“diffusion” Sample?
Parallelization method with OpenMP：
[Algorithm] Parallelize spatial (Y or X) for-loop

 Each thread computes its part in the space
 Time (T) for-loop cannot be parallelized, due to dependency

[Data] Data structure is same as sequential version

With MPI:
[Algorithm] Same policy as OpenMP version

 Each process computes its part in the space
[Data] Arrays are divided among processes

 Each process has its own part of arrays

7

Parallelize “diffusion” Sample

 In diffusion, computation of a new point requires 5 old
points (5-point stencil)

Double buffering
An Array for
“even” steps

An Array for
“odd” steps

Considering Data Distribution
 A simple distribution is like:

8

Computation requires data in other processes
Communication is required
So, where should received data be put?

9

Introducing “Halo” Region
 It is a good idea to make additional rows to arrays
 called “Halo” region

Halo

Halo

Each time step consists of:
(1) Communication: Recv data and store into “halo” region

 Also neighbor processes need “my” data
(2) Computation: Old data (including “halo”)  New data

(1)Comm

(1)Comm

(2)
Comp

10

Overview of MPI “diffusion”
(Still Unsafe)

for (t = 0; t < nt; t++) {

Send B to rank-1, Send D to rank+1

Recv A from rank-1, Recv E from rank-1

Computes points in rows B—D

Switch old and new arrays

} This version is still unsafe, because
this may cause deadlock

A
B
C
D
E

(1) Communication

(2) Computation

Sample for Neighbor
Communication
Available at ~endo-t-ac/ppcomp/17/neicomm/
Execution: mpirun –np [np] ./neicomm

(1) Each process produces a single value (rank2 here)
(2) Each process receives values from its neighbors

(rank-1 and rank+1)

11

Rank 0 Rank 1 Rank 2 Rank 3

0 1 4 9491401

Neighbor Communication

Send to rank-1

Send to rank+1

Recv from rank-1

Recv from rank-1

12

Start to send to rank-1

Start to send to rank+1

Recv from rank-1

Recv from rank-1

Finish to send to rank-1

Finish to send to rank+1

Unsafe version  Safe version 

※ It requires a long story to see the reason of deadlock,
so omitted here
Hint: Not only MPI_Recv, but MPI_Send is “blocking”
communication if message size is very large

neicomm_safe()
in neicomm sample

neicomm_unsafe()
in neicomm sample

Non-Blocking Communication

 Non-blocking communication: starts a
communication (send or receive), but does
not wait for its completion
 cf) MPI_Recv is blocking communication, since it

waits for message arrival
 Process should wait for the completion later

13

14

Non-Blocking Receive
MPI_Status stat;

MPI_Recv(buf, n, type, src, tag, comm, &stat);

MPI_Status stat;

MPI_Request req;

MPI_Irecv(buf, n, type, src, tag, comm, &req);←start recv

MPI_Wait(&req, &stat); ←wait for completion

MPI_Irecv: starts receiving, but it returns Immediately
MPI_Wait: wait for message arrival
MPI_Request looks like a “ticket” for the communication

Behavior of MPI_Irecv
 MPI_Irecv itself immediately returns
 Program can use received data after MPI_Wait
※ MPI_Recv = MPI_Irecv + MPI_Wait

15

rank 0 rank 1

Send

Irecv

Wait wait for message arrival

immediately returns

Process can do something

message

16

Non-Blocking Send

MPI_Send(buf, n, type, dest, tag, comm);

MPI_Status stat;

MPI_Request req;

MPI_Isend(buf, n, type, dest, tag, comm, &req); ←start send

MPI_Wait(&req, &stat); ←wait for completion

MPI_Isend: starts sending, but it returns Immediately
MPI_Wait can be also used for waiting completion

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

17

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

Due Date
May 8

Due Date
May 29

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see Apr 27 slides or OCW-i.

18

19

Next Class
 MPI (3)
 Improvement of “matrix multiply” sample
 Group Communication

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. 8
	“diffusion” Sample Program (1) �(Revisited)
	“diffusion” Sample Program (2)�(Revisited)
	Data Structures in diffusion�(Revisited)
	Double Buffering Technique�(Revisited)
	How Do We Parallelize “diffusion” Sample?
	Parallelize “diffusion” Sample
	Considering Data Distribution
	Introducing “Halo” Region
	Overview of MPI “diffusion”�(Still Unsafe)
	Sample for Neighbor Communication
	Neighbor Communication
	Non-Blocking Communication
	Non-Blocking Receive
	Behavior of MPI_Irecv
	Non-Blocking Send
	Assignments in this Course
	Assignments in MPI Part�(Abstract)
	Next Class

