
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. 12

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming with CUDA
(1)

Parallel Programming using
CPUs
 Both OpenMP and MPI uses multiple processor

cores in CPUs
 OpenMP: cores in a single node
 MPI: we can use cores in multiple nodes

2

Processor
cores

Memory

OpenMP MPI

In Part 3, we use other processors than CPUs  GPU

2010/12/06

GPU Computing
 Graphic processing units (GPU) have been originally used for

computing graphics (including video games)
 A GPU has many (simple) cores

 CPU: 4 to 32 cores. GPU: >100 cores
 Recent GPUs can be used for general applications!

 The concept is called GPGPU (General-Purpose computing on GPU)
 Became popular since NVIDIA corp. invented CUDA

language in 2007

A TSUBAME2 Node with GPUs

6core
Xeon
X5670

70.4GF/s

6core
Xeon
X5670

70.4GF/s

32GB/s
(3channels)

QPI
25.6GB/s

PCIe 2.0 x16
8GB/s

４ｘQDR InfiniBand 4GB/s

IOH

IOH

DDR3
memory
24GB

6GB

GPU 2: Tesla K20X

6GB

GPU 1: Tesla K20X

GDDR5
6GB

GPU 0: Tesla K20X
2688 CUDA

cores
1310GF/s

250GB/s

DDR3
memory
30GB

54GB
2688 CUDA

cores
1310GF/s

2688 CUDA
cores

1310GF/s

SSD
SSD
60GB

Characteristics of GPUs
 A GPU is a board or a card attached to computers

⇒It cannot work alone. Driven by CPUs
 A GPU has many cores (called CUDA cores)

⇒K20X (TSUBAME’s GPU) has 2688 CUDA cores (=192 x 14SMs)
 A GPU has dedicated memory (called device memory),

which is different from CPU’s memory
⇒K20X has 6GB memory

GPU processorDevice memory

PCI-Express connector (connected with motherboard)

CUDA Programming Language
 A programming language for NVIDIA GPUs
 Extensions to C/C++/Fortran
 Compile with nvcc command
 File extension is .cu

Official documents: http://docs.nvidia.com/cuda/
“Programming Guide” is important

※ CUDA does not work computers without NVIDIA GPUs
 AMD GPUs, Intel GPUs, no GPU machine…

 OpenCL can work on such machines, but harder to
program

 Recently OpenACC is becoming popular
 Directive-based (#pragma) GPU programming

http://docs.nvidia.com/cuda/

inc-seq: First Sample of CUDA

 Available at ~endo-t-ac/ppcomp/17/inc-seq/
 It creates an integer array. The array elements are

incremented on GPU
 Compile and execute

$ nvcc inc-seq.cu –o inc-seq
$./inc-seq

※ nvcc also takes optimization flags such as “-O”

Submission of GPU Jobs

8

#!/bin/sh
cd $PBS_O_WORKDIR
./inc-seq

t2sub –q S –W group_list=t2g-ppcomp
–l ncpus=1 –l gpus=1 ./job.sh

(1) Make a script file (For example, the name is job.sh)：

(2) Throw the job with “t2sub” Group name is this course

Number of used GPUs per node

Programming Model of CUDA

9

CPU GPU

call

return

 The program starts from main()
function on CPU
 GPU only works when some tasks

are asked by CPU
 Functions running on GPUs =

GPU kernel functions

 CPU and GPU has distinct
memory space
 Host memory on CPU
 Device memory on GPU
 “Distributed memory model” here

 Many threads run on a GPU
 Threads can share data on device

memory
 “Shared memory model” here

threads
on GPU

Structure of a CUDA Program

 Two types of functions are in “.cu” files
 Host functions
 Functions run on CPU, including main()
 It can
 transfer data to/from GPU
 call GPU kernel function

 GPU kernel functions
 Functions run on GPU
 Have keywords “__global__” or “__device__” (later)

Host Functions GPU Kernel Functions+

Typical Flow of a CUDA Program

(1) Allocate regions on device memory

(2) Transfer input data to device memory

(3) Call GPU kernel function

(5) Transfer output data to host memory

__global__ void kernel_func()
{

return;
}

on GPU

Input Input

Output Output

on CPU

Do not forget distinction
of two types of memory!

Memory on CPU (Host memory) Memory on GPU(Device memory)

(4) Execute on GPU

This is a GPU kernel function

Step (1) in inc-seq
Allocate a Region on GPU
 cudaMalloc(void **devpp, size_t count)
 allocate a memory region on device memory
 devpp: result pointer is put into *devpp
 count: region size in bytes

int *arrayD;
cudaMalloc((void **)&arrayD, sizeof(int) * 32);
// arrayD has the address of allocated device memory

cf) Allocate an int array of length 32

Note: cudaMalloc() must be called on CPU, not on GPU

Step (2) in inc-seq
Transfer Data to GPU
 cudaMemcpy(void *dst, const void *src,
size_t count, cudaMemcpyKind kind)
 Transfer data between host memory and
device memory
 dst: Destination address
 src: Source address
 count: Transfer size in bytes
 kind: Transfer type. When transferring from

CPU to GPU, this is cudaMemcpyHostToDevice

int arrayH[32];
:

cudaMemcpy(arrayD, arrayH, sizeof(int)*32,
cudaMemcpyHostToDevice);

cf) Transfer contents of arrayH on CPU to arrayD on GPU

Note: cudaMemcpu() must be called on CPU, not on GPU

Step (3) in inc-seq
Call a GPU Kernel Function from CPU
 kernel_func<<<grid_dim, block_dim>>>
(kernel_param1, …);
 kernel_func: Function name
 kernel_param: Parameters to the function

inc<<<1, 1>>>(arrayD, 32);

cf) Call a GPU kernel function “inc”

New syntax in CUDA!!
Here number of threads
are described
(in next class)

Parameter 1:
A pointer of input array.
This must be arrayD on device memory

Parameter 2: Array length

Function name.
“inc” must be
declared with
__global__
keyword What if arrayH on host is

specified?

Step (4) in inc-seq
Execute a GPU Kernel Function on GPU
 Function must be have a keyword “__global__”

note： 2 underbars before global, 2 underbars after global
 Return type must be “void” (cannot return a value)
 In the function, GPU can access to device memory.

cannot access to host memory

__global__ void inc(int *array, int len)
{

int i;
for (i = 0; i < len; i++) array[i]++;
return;

}

cf)： Increment elements of int array (by 1 thread)

Step (5) in inc-seq
Transfer Data from GPU
 cudaMemcpy is used
 Transfer type should be
cudaMemcpyDeviceToHost

cudaMemcpy(arrayH, arrayD, sizeof(int)*32,
cudaMemcpyDeviceToHost);

To discard a region on device
memory,use cudaFree(arrayD);

cf) Transfer contents of arrayD on GPU to arrayH on CPU
destination source

Two Types of GPU Kernel Functions
1) Functions with __global__ keyword

 “Gateway” from CPU
 Return value type must be “void”

2) Function with __device__ keyword
 Callable only from GPU
 Can have return values
 Recursive call is OK

Host
Function

on CPU on GPU

Function with
__global__

Function with
__device__

f(x); f(x);
f(x);f<<<gs,bs>>>(x);

What Can be Done on GPUs?
 Basic computations (+, -, *, /, %, &&, ||...) are OK
 if, for, while, return are OK
 Device memory access is OK
 Host memory access is NG
 Calling host functions is NG
 Calling most of functions in libc or other libraries for CPUs

are NG
 Exceptionally, printf() is OK

 Appendix B.17 in “Programming Guide”
 Several mathematical functions, sin(), sqrt()… are OK

 Appendix B.7 in “Programming Guide”
 Calling malloc()/free() on GPU is OK, if the size is small

 Appendix B.18 in “Programming Guide”
 If we need large regions on device memory, call cudaMalloc()

from CPU

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

19

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

Due Date
May 8

Due Date
May 29

Due Date
June 12

20

Assignments in GPU Part (1)
Choose one of [G1]—[G3], and submit a report
Due date: June 12 (Monday)

[G1] Parallelize “diffusion” sample program by CUDA
(explained later).

Optional：
 Make array sizes variable parameters
 Improve performance further
 Different assignment of threads and elements
 Using shared memory
 etc.

21

Assignments in GPU Part(2)
[G2] Evaluate speed of “mm-cuda” in detail (explained

later).
 Use various matrices sizes
 Evaluate effects of data transfer (cudaMemcpy) cost
 Compare with CPU (OpenMP) version
Optional：
 You may change the program
 Different data format
 Different assignment of threads and elements
 Using shared memory
 etc

22

Assignments in GPU Part (3)
[G3] (Freestyle) Parallelize any program by CUDA.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other

23

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Report should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME2
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME2 are ok, if available

24

Next Class:
 GPU Programming (2)
 Parallelization with massive number of threads

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. 12
	Parallel Programming using CPUs
	GPU Computing
	A TSUBAME2 Node with GPUs
	Characteristics of GPUs
	CUDA Programming Language
	inc-seq: First Sample of CUDA
	Submission of GPU Jobs
	Programming Model of CUDA
	Structure of a CUDA Program
	Typical Flow of a CUDA Program
	Step (1) in inc-seq�Allocate a Region on GPU
	Step (2) in inc-seq�Transfer Data to GPU
	Step (3) in inc-seq�Call a GPU Kernel Function from CPU
	Step (4) in inc-seq�Execute a GPU Kernel Function on GPU
	Step (5) in inc-seq�Transfer Data from GPU
	Two Types of GPU Kernel Functions
	What Can be Done on GPUs?
	Assignments in this Course
	Assignments in GPU Part (1)
	Assignments in GPU Part(2)
	Assignments in GPU Part (3)
	Notes in Submission
	Next Class:

