
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. ７

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (1)

How Can We Use Many Nodes in
Supercomputers?
1. Throw several jobs into job scheduler

 cf) Program executions with different parameters 
Parameter Sweep

 Jobs are dependent, and no cooperation

2

2. Use distributed memory programming  A single job
can use multiple nodes

 Socket programming, Hadoop, Spark…
 And MPI

3

Classification of Parallel
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming
without
parallelsim

4

MPI (message-passing
interface)
 Programming interface with distributed

memory model
 Used by C, C++, Fortran programs
 Programs call MPI library functions, for message

passing etc.

Differences from OpenMP
In MPI,
 A program run consists of multiple processes (not

threads)
 A program run can use multiple nodes 
 The number of running processes is basically constant (always in

parallel region)
 No variables are shared. Instead message passing is

used
 Data distribution has to be programmed

 No smart syntaxes such as “omp for” or “omp task” 
 Task distribution has to be programmed
 This is because MPI is older than OpenMP

5

6

A MPI Program Looks Like
#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

(Some computation/communication)

MPI_Finalize();

}

 Initialize MPI

 Finalize MPI

Rank
0

Rank
1

Rank
2

Rank
3

7

Sample Programs on
TSUBAME2

 MPI programs are compiled with mpicc
command
 In sample directories, “make” command will be ok

 Running an MPI program (on interactive nodes)
 mpirun –np [num_process] [program] [options]
cf) mpirun –np 2 ./mpitest

 On interactive nodes, up to 4 processes are allowed
 If you want more, use job scheduler

Available at ~endo-t-ac/ppcomp/17/mpitest/
~endo-t-ac/ppcomp/17/mm-mpi/
~endo-t-ac/ppcomp/17/pi-mpi/

8

Throw MPI Jobs

#!/bin/sh
cd $PBS_O_WORKDIR
mpirun –np 48 –hostfile $PBS_NODEFILE ./myprog

t2sub –q S –W group_list=t2g-ppcomp
–l select=4:mpiprocs=12 -l place=scatter ./job.sh

(1) Make a script file (For example, the name is job.sh)：

(2) Throw the job with “t2sub”

 Here program name is “myprog”. We are going to execute
it with 12 processes × 4 nodes = 48 processes

Group name is this course

Number of processes.
Should be consistent with (2)

Number of nodes Number of processes per node

9

ID of Each Process
 Each process has its ID (0, 1, 2…), called rank
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 Get its rank
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 Get the number of total processes
 0 ≦ rank < size
 The rank is used as target of message passing

10

Basics of MPI:
Send and Receive of a message
In order to send contents of

“int a[16]” from rank 0 to rank1
 rank0 calls
MPI_Send(a, 16, MPI_INT, 1,

100, MPI_COMM_WORLD);

 rank1 calls
MPI_Recv(b, 16, MPI_INT, 0,

100, MPI_COMM_WORLD, &stat);

rank 0 rank 1

MPI_Send

MPI_Recv

11

MPI_Send
MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);

 a: Address of memory region to be sent
 16: Number of data to be sent
 MPI_INT: Data type of each element
 MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI_BYTE・・・

 1: Destination process of the message
 100: An integer tag for this message (explained later)
 MPI_COMM_WORLD: Communicator (explained later)

12

MPI_Recv
MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

 b: Address of memory region to store incoming message
 16: Number of data to be received
 MPI_INT: Data type of each element
 0: Source process of the message
 100: An integer tag for a message to be received

 Should be same as one in MPI_Send
 MPI_COMM_WORLD: Communicator (explained later)
 &stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives

13

“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: mpirun –np [np] ./mm
[m] [n] [k]

CA

B

m

k

k

n

MPI version available at ~endo-t-ac/ppcomp/17/mm-mpi/

14

Why Distributed Programming is
More Difficult

 Shared memory: Programmers
consider how computations are
divided

A

B

C A

B0

A

 Distributed memory:
Programmers consider how data
and computations are divided

In this case, matrix A is accessed
by all threads
 Programmers do not have to
know that

Programmers have to design
which data is accessed by
each process

C0

B1

C1

Programming matrix multiplication

15

Programming Data Distribution
(for mm-mpi sample)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C
vertically.
I will put replicas of
A on every process...

Programming actual location:

16

Programming Actual Data
Distribution
 We want to distribute a m×n

matrix among p processes
 We assume n is divisible by p

 Each process has a partial
matrix of size m×(n/p)
 We need to “malloc”

m*(n/p)*sizeof(data-type) size
 We need to be aware of relation

between partial matrix and entire
matrix
 (i,j) element of partial matrix

owned by Process r ⇔
(i, n/p*r + j) element of entire

matrix

Entire matrix

m

n
Actual matrix
per process

m

n/p

(0,0)

local index

global index

17

What is Done for Indivisible Cases
 What if data size n is indivisible by p?
 We let n=11, p=4
 How many data each process take?
 n/p = 2 is not good (C division uses round down). Instead, we

should use round up division
 (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

(n+p-1)/p
See divide_length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

18

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3?]

[G1]
[G2]
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

19

Assignments in MPI Part (1)
Choose one of [M1]—[M3], and submit a report
Due date: May 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI
(methods are explained later).

Optional：
 Make array sizes variable parameters
 Improve performance further. Blocking, SIMD

instructions, etc, may help
 Considering fractions, in the case with NY is not

divisible by the number of processes

20

Assignments in MPI Part(2)
[M2] Improve mm-mpi sample in order to reduce

memory consumption (explained later)
Optional:
 Considering fractions is a good idea, but it is not

necessary
 Trying advanced algorithms, such as SUMMA

(Scalable Universal Matrix Multiplication
Algorithm)[Van de Geijn 1997] is good

21

Assignments in MPI Part (3)
[M3] (Freestyle) Parallelize any program by OpenMP.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other

22

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Report should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME2
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME2 are ok, if available

23

Next Class:
 MPI (2)
 How to parallelize diffusion sample with MPI

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. ７
	How Can We Use Many Nodes in Supercomputers?
	Classification of Parallel Programming Models
	MPI (message-passing interface)
	Differences from OpenMP
	A MPI Program Looks Like
	Sample Programs on TSUBAME2
	Throw MPI Jobs
	ID of Each Process
	Basics of MPI:�Send and Receive of a message
	MPI_Send
	MPI_Recv
	“mm” sample: Matrix Multiply
	Why Distributed Programming is More Difficult
	Programming Data Distribution�(for mm-mpi sample)
	Programming Actual Data Distribution
	What is Done for Indivisible Cases
	Assignments in this Course
	Assignments in MPI Part (1)
	Assignments in MPI Part(2)
	Assignments in MPI Part (3)
	Notes in Submission
	Next Class:

