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How Can We Use Many Nodes in 
Supercomputers?
1. Throw several jobs into job scheduler

 cf) Program executions with different parameters 
Parameter Sweep

 Jobs are dependent, and no cooperation
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2. Use distributed memory programming  A single job 
can use multiple nodes

 Socket programming, Hadoop, Spark…
 And MPI
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Classification of Parallel 
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming 
without 
parallelsim
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MPI (message-passing 
interface)
 Programming interface with distributed 

memory model
 Used by C, C++, Fortran programs
 Programs call MPI library functions, for message 

passing etc.



Differences from OpenMP
In MPI,
 A program run consists of multiple processes (not 

threads)
 A program run can use multiple nodes 
 The number of running processes is basically constant (always in 

parallel region)
 No variables are shared. Instead message passing is 

used
 Data distribution has to be programmed

 No smart syntaxes such as “omp for” or “omp task” 
 Task distribution has to be programmed
 This is because MPI is older than OpenMP
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A MPI Program Looks Like
#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

(Some computation/communication)

MPI_Finalize();

}

 Initialize MPI

 Finalize MPI

Rank 
0

Rank 
1

Rank 
2

Rank 
3
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Sample Programs on 
TSUBAME2

 MPI programs are compiled with mpicc
command
 In sample directories, “make” command will be ok

 Running an MPI program (on interactive nodes)
 mpirun –np [num_process] [program] [options]
cf) mpirun –np 2 ./mpitest

 On interactive nodes, up to 4 processes are allowed
 If you want more, use job scheduler

Available at ~endo-t-ac/ppcomp/17/mpitest/
~endo-t-ac/ppcomp/17/mm-mpi/
~endo-t-ac/ppcomp/17/pi-mpi/
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Throw MPI Jobs

#!/bin/sh
cd $PBS_O_WORKDIR
mpirun –np 48 –hostfile $PBS_NODEFILE ./myprog

t2sub –q S –W group_list=t2g-ppcomp
–l select=4:mpiprocs=12 -l place=scatter ./job.sh

(1) Make a script file (For example, the name is job.sh)：

(2) Throw the job with “t2sub”

 Here program name is “myprog”. We are going to execute 
it with 12 processes × 4 nodes = 48 processes

Group name is this course

Number of processes. 
Should be consistent with (2)

Number of nodes Number of processes per node
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ID of Each Process
 Each process has its ID (0, 1, 2…), called rank
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 Get its rank
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 Get the number of total processes
 0 ≦ rank < size
 The rank is used as target of message passing
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Basics of MPI:
Send and Receive of a message
In order to send contents of          

“int a[16]”  from rank 0 to rank1
 rank0 calls
MPI_Send(a, 16, MPI_INT, 1, 

100, MPI_COMM_WORLD);

 rank1 calls
MPI_Recv(b, 16, MPI_INT, 0,

100, MPI_COMM_WORLD, &stat);

rank 0 rank 1

MPI_Send

MPI_Recv
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MPI_Send
MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);

 a: Address of memory region to be sent
 16: Number of data to be sent
 MPI_INT: Data type of each element
 MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI_BYTE・・・

 1: Destination process of the message
 100: An integer tag for this message (explained later)
 MPI_COMM_WORLD: Communicator (explained later)
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MPI_Recv
MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

 b: Address of memory region to store incoming message
 16: Number of data to be received
 MPI_INT: Data type of each element
 0: Source process of the message
 100: An integer tag for a message to be received

 Should be same as one in MPI_Send
 MPI_COMM_WORLD: Communicator (explained later)
 &stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives
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“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n) 
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size. 
 Each matrix is expressed as a 1D 

array by column-major format

 Execution: mpirun –np [np] ./mm 
[m] [n] [k]

CA

B

m

k

k

n

MPI version available at ~endo-t-ac/ppcomp/17/mm-mpi/
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Why Distributed Programming is 
More Difficult

 Shared memory: Programmers 
consider how computations are 
divided

A

B

C A

B0

A

 Distributed memory: 
Programmers consider how data 
and computations are divided

In this case, matrix A is accessed 
by all threads
 Programmers do not have to 
know that

Programmers have to design
which data is accessed by
each process

C0

B1

C1

Programming matrix multiplication
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Programming Data Distribution
(for mm-mpi sample)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C 
vertically.
I will put replicas of
A on every process...

Programming actual location:
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Programming Actual Data 
Distribution
 We want to distribute a m×n

matrix among p processes
 We assume n is divisible by p

 Each process has a partial 
matrix of size m×(n/p)
 We need to “malloc” 

m*(n/p)*sizeof(data-type) size
 We need to be aware of relation 

between partial matrix and entire 
matrix
 (i,j) element of partial matrix 

owned by Process r ⇔
(i, n/p*r + j) element of entire 

matrix

Entire matrix

m

n
Actual matrix 
per process

m

n/p

(0,0)

local index

global index
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What is Done for Indivisible Cases
 What if data size n is indivisible by p?
 We let n=11, p=4
 How many data each process take?
 n/p = 2 is not good (C division uses round down). Instead, we 

should use round up division
 (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

(n+p-1)/p
See divide_length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)



Assignments in this Course
 There is homework for each part. Submissions of reports 
for 2 parts are required
 Also attendances will be considered
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Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] 
[M2] 
[M3?]

[G1] 
[G2] 
[G3?]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem
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Assignments in MPI Part (1)
Choose one of [M1]—[M3], and submit a report
Due date: May 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI 
(methods are explained later).

Optional：
 Make array sizes variable parameters
 Improve performance further. Blocking, SIMD 

instructions, etc, may help
 Considering fractions, in the case with NY is not 

divisible by the number of processes
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Assignments in MPI Part(2)
[M2] Improve mm-mpi sample in order to reduce 

memory consumption (explained later)
Optional:
 Considering fractions is a good idea, but it is not 

necessary
 Trying advanced algorithms, such as SUMMA 

(Scalable Universal Matrix Multiplication 
Algorithm)[Van de Geijn 1997] is good
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Assignments in MPI Part (3)
[M3] (Freestyle) Parallelize any program by OpenMP.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other
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Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Report should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new 
functions

 Performance evaluation on TSUBAME2
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME2 are ok, if available
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Next Class:
 MPI (2)
 How to parallelize diffusion sample with MPI
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