
1

2017
Practical Parallel Computing
(実践的並列コンピューティング)

No. 3

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (1)

2

Features of OpenMP
 Parallel programming API based on

shared memory model
 Only one compute node can be used
 On TSUBAME2.5, up to 12cores

 Extensions to C/C++/Fortran
 Famous compilers support OpenMP!
 You’ll see much information on Web

 Directive syntaxes & library functions
 Directives look like: #pragma omp ~~
 (Simpler than MPI in Part2)

 Multiple threads work cooperatively
 Data are basically shared by threads

 We can use thread-local (private) variables

Threads

Data

Processor
cores

Memory

Software

Hardware

OpenMP Programs Look Like

3

int a[100], b[100], c[100];
int i;

#pragma omp parallel for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

An example of OpenMP
directive
In this case, a directive has
an effect on the following
block/sentence

4

Sample Programs
See ~endo-t-ac/ppcomp/17/ on TSUBAME2.5
(1) Copy the following sub-directories to (anywhere in)
your own home directory
 Pi (pi, pi-omp)
 Matrix multiply (mm, mm-omp)
 Heat diffusion (diffusion)

(2) Executable binaries are generated by “make” command in
each sub-directory

Executions of Samples
(3-1) Normal (sequential) versions：
 pi

 ./pi 1000000
 mm

 ./mm 500 500 500
 diffusion

 ./diffusion
(3-2) OpenMP versions
 pi-omp

 export OMP_NUM_THREADS=4 number of threads
 ./pi 1000000

 mm
 export OMP_NUM_THREADS=4
 ./mm 500 500 500

5

6

Compiling OpenMP Programs
All famous compilers support OpenMP (fortunately),

but require different options (unfortunately)
 GCC (gcc command)
 -fopenmp option in compiling and linking

 PGI compiler (pgcc)
 -mp option in compiling and linking

 Intelコンパイラ (icc)
 -openmp option in compiling and linking

Also see outputs of “make” in OpenMP sample
directory

7

“pi” sample
Estimate approximation of π (circumference/diameter) by

Monte-Carlo method
 Sequential version in “pi”, OpenMP version in “pi-omp”
 Method

 Select points in 1x1 square randomly
 Let PR be probability that a point is included in quarter circle.

4 x PR π
 Execution：./pi [n]

 n: Number of point selection
 Compute complexity： O(n)

Note: This program is only for a simple sample.
π is usually computed by other algorithms.

x
x

x

x

x
x

xx

Submitting OpenMP Programs
to Job Scheduler
 When you want to run pi sample with 8 threads

(8 processor cores)

8

#!/bin/sh
cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=8
./pi 100000000

job.sh

 Job submission
 cf) t2sub –q S –W group_list=t2g-ppcomp –l ncpus=8 ./job.sh

Group name in this course
(You can omit this option if job time < 10min)

9

Basic Parallelism in OpenMP：
Parallel Region
#include <omp.h>

int main()
{

A;
#pragma omp parallel

{
B;

}
C;

#pragma omp parallel
D;
E;

}

Sentence/block immediately after #pragma omp parallel
is called parallel region, executed by multiple threads
 Here a “block” is a region surrounded by braces {}
 Functions called from parallel region are also in parallel region

A

B

C

D

E

Parallel
region

10

Number of Threads
 Specify number of threads by OMP_NUM_THREADS

environment variable (out of program)
 cf) export OMP_NUM_THREADS=12

in command line

 Obtain number of threads
 cf) n = omp_get_num_threads();

 Obtain “my ID” of calling thread
 cf) id = omp_get_thread_num();
 0 ≦ id < n (total number)

11

#pragma omp for
for Easy Parallel Programming
“for” loop with simple forms can parallelized easily

{
int s = 0;

#pragma omp parallel
{

int i;
#pragma omp for

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}
}

}

• “for” loop right after “omp for”
is parallelized, with work
distribution

• When this sample is
executed with 4 threads,
each thread take 100/4=25
iterations speed up!!
・ Indivisible cases are ok, such
as 13 threads

• Abbreviation: omp parallel + omp for = omp parallel for

Why “omp for” Reduces
Execution Time

 What if we use “omp parallel”, but forget to write “omp for”?

12

thread
Without OpenMP

With “omp parallel” &
“omp for”

i=0 i=99 i=0 i=99

Every thread would work
for all iterations
No speed up
Answer will be wrong

13

When We Can Use “omp for”
 Loops with some (complex) forms cannot be supported,

unfortunately
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4)

NG : for (i = 0; test(i); i++)

NG : for (p = head; p != NULL; p = p->next)

14

Advanced Topic on “omp for”
(1): reduction
 Typical code pattern in for loop: Aggregate result of each

iteration into a single variable, called reduction variable
 cf) We add +1 to “count” variable in pi-omp sample
 For such cases, “reduction” option is required

int count = 0;
#pragma omp parallel

{
#pragma omp for reduction (+:count)

for (i = 0; i < 100; i++) {
count += f(i);

}
}

Operator is one of
+, -, *, &&, ||, etc

If we forget to write “reduction” option The answer
would be wrong

Name of reduction
variable

15

Advanced Topic on “omp for”
(2): schedule
 Usually, each thread takes iterations uniformly

 cf) 1000 iterations / 4 threads = 250 iteration per thread

 For some computations (execution times per iteration are
varying), the default schedule may degrade performance
#pragma omp for schedule(・・・) may improve

 schedule(static)
uniform (default)

 schedule(static, n)
block cyclic distribution

 schedule(dynamic, n)
idle thread takes next “chunk”

 schedule(guided, n)
“chunk” size gets smaller as the advance

n

n

16

Time Measurement in Samples
 gettimeofday() function is used
 It provides wall-clock time, not CPU time
 Time resolution is better than clock()
#include <stdio.h>
#include <sys/time.h>

:
{

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time */

・・・Part for measurement ・・・
gettimeofday(&et, NULL); /* Finishing time */
us = (et.tv_sec-st.tv_sec)*1000000+

(et.tv_usec-st.tv_usec);
/* us is difference between st & et in microseconds */

}

Assignments in this Course

 Part 1: OpenMP for shared memory parallel programming
 Part 2: MPI for distributed memory parallel programming
 Part 3: GPU programming

Your score will be determined by the followings
 There is homework for each part. Submission of reports
for 2 parts is required

 The due date will be about two weeks after each part finished
 (You can submit reports more)

 Also attendances will be considered

17

18

Assignments in OpenMP Part (1)
Choose one of [O1]—[O3], and submit a report
Due date: May 8 (Monday)

[O1] Parallelize “diffusion” sample program (explained
later) by OpenMP.

Optional：
 Make array sizes variable parameters, which are

specified by execution options. “malloc” will be
needed.

 Improve performance further. Blocking, SIMD
instructions, etc, may help.

19

Assignments in OpenMP Part (2)
[O2] Parallelize “sort” sample program (explained later)

by OpenMP.
 NOTE：compiler must support OpenMP3.0 or more

 pgcc or icc on TSUBAME2 (gcc 4.3.4 is NG)

Optional：
 Comparison with other algorithms than quick sort
 Heap sort? Merge sort?

20

Assignments in OpenMP Part (3)
[O3] (Freestyle) Parallelize any program by OpenMP.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other
 cf) Uniform task division is not good for load balancing

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 Report should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME2
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME2 are ok, if available

22

Next Class:
 OpenMP(2)
 mm: matrix multiply sample
 diffusion：heat diffusion sample using stencil

computation
 Related to assignment [O1]

	2017�Practical Parallel Computing�(実践的並列コンピューティング)�No. 3
	Features of OpenMP
	OpenMP Programs Look Like
	Sample Programs
	Executions of Samples
	Compiling OpenMP Programs
	“pi” sample
	Submitting OpenMP Programs to Job Scheduler
	Basic Parallelism in OpenMP：�Parallel Region
	Number of Threads
	#pragma omp for�for Easy Parallel Programming
	Why “omp for” Reduces Execution Time
	When We Can Use “omp for”
	Advanced Topic on “omp for” (1): reduction
	Advanced Topic on “omp for” (2): schedule
	Time Measurement in Samples
	Assignments in this Course
	Assignments in OpenMP Part (1)
	Assignments in OpenMP Part (2)
	Assignments in OpenMP Part (3)
	Notes in Submission
	Next Class:

