
Complexity 2017.9.28

Lecture 2. More on Computation Models

We introduce other important computation models.

2.1 Boolean circuits and circuit complexity (Only briefly explained today)

We use the following definition, which is slightly modified from [1:Def. 9.21].

Definition 2.1 A Boolean circuit (in short, circuit) is a collection of gates and nodes

connected by wires. Cycles are not permitted. Computing gates take three forms: AND

gates, OR gates, and NOT gates. Each computing gate take values from input nodes and

yields a value to its output node which could be used as an input node of the other gate.

An input gate is an input node that is not the output node of any computing gate. An

output gate is an output node that is not the input node of any computing gate.

The following is an example of circuits. See the explanation after [1:Def. 9.21] for the

way to compute a value when Boolean values are given to input gates x and y. (In this

course note, circuits are drawn upside-down compared with [1], with input gates at the

bottom

Figure 2.1 A circuit computing the XOR function ⊕

In general we may consider a circuit as a device for computing a fixed length binary

string from a fixed length binary string. For example, the circuit C of Figure 2.2 is

regarded as a device computing a 3 bit binary string z = z1z2z2z3 from 6 bit binary string

xy = x1x2x3y1y2y3, which we denote as C(xy) = z.

Figure 2.2 A circuit computing the bit-wise XOR function (for 3 bit strings)

1

Since each circuit has fixed number of input gates, it can handle only fixed size binary

strings. Therefore, we use a family {C`}`≥1 of circuits for computing a given function f ,

where each C` is a circuit for computing size ` input strings (see also [1:Def. 9.27]).

Definition 2.2 For a given problem L, we say that a circuit family {C`}`≥1 computes L

if for every ` ≥ 1, we have C`(x) = L(x) for all x ∈ {0, 1}`.
Remark: Recall that problems we consider in this course are decision problems over

{0, 1}, that is, problems of computing Boolean functions on {0, 1}∗.

The size of a circuit is the number of computing gates of the circuit, which is the

main computational cost of a circuit. Note that for a given problem L, it is possible to

determine a minimal size circuit family as follows, which allows us to define the circuit

size complexity measure for the problem L directly.

Definition 2.3 Let L be any problem.

(1) A minimal circuit family {C`}`≥1 for L is a circuit family {C`}`≥1 such that (i) it

computes L, and (ii) for every ` ≥ 1, the size of C` is the smallest among all circuits

computing L on {0, 1}`.
(2) Let C = {C`}`≥1 be a minimal circuit family for L. Then the circuit size complexity

of L is defined by

sizeL(`) = the size of C`.

Remark: (i) There is no notion of “worst-case instance” when discussing the circuit size.

(ii) For any circuit family C, we would also use sizeC(`) to denote the size of the circuit C`.

One of the important features of circuits is that it can computes values in parallel. The

parallel computation time is measured by the depth of a circuit, that is, the number of

computing gates on the longest path from its input gate to its output gate. We define

depthL(`) and depthC(`) in the same way as size.

Now we define the following basic circuit complexity classes.

Definition 2.4 For any s, d : Z+ → Z+, the circuit size and size&depth complexity

classes, SIZE(s(`)) and SIZE&DEPTH(s(`), d(`)), are defined as follows.

SIZE(s(`)) = {L | sizeL(`) = O(t(`)) }.
SIZE&DEPTH(s(`), d(`)) = {L | sizeL(`) = O(t(`)) and depthL(`) = O(d(`)) }.

2.2 Circuits and Turing machines

We consider the relation between circuits and Turing machines. First we show a relatively

easy way to design a circuit family for simulating a given Turing machine. (Recall that

we are using one-tape Turing machines for our computation model.)

Theorem 2.1 There exists some constant c2.1 with the following property: For any

Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject), we can construct a class of circuits

C = {C`}`≥1 that simulates M and satisfies the following for any input x of length `:

sizeC(`) ≤ c2.1cM(timeM(`))
2,

2

where cM is (|Q|+ |Γ|) · |Q| · |Γ|.
Remark: For any finite set, we use |A| to denote the number of elements in the set A.

On the other hand, for any string w ∈ {0, 1}∗, we also use |w| to denote the length of w.

Consider the computation of M on inputs of length `, and design the circuit C` simu-

lating it. Let s ≤ timeM(`) denote the max. number of tape cells used by M during the

computation. Intuitively, C` is designed as a layer of gates as shown in Figure 2.3. The

simulation idea is to express the configuration of M(x) after each move by a sequence of

input nodes of a sequence of gates at each layer of the circuit that computes the next

configuration on their output nodes. More specifically, two sets of input nodes are used;

one is the set of input nodes to express the current state of M and another is the set of

input nodes to express the tape symbols currently written on tape cells and M’s tape head

position.

The structure of the circuit C` for simulating M on any input of length `. We

assume here that M uses 6 finite states q0, q1, . . . , q5 and 5 tape symbols 0, 1, 2, 3,

and .

Figure 2.3 The structure of the circuit C`

Note that circuits do not have the “if branch” mechanism. On the other hand, we may

use its parallel computation mechanism. That is, we prepare input nodes and gates for

3

all possible situations that are computed in parallel, where only the gates with the input

nodes that have meaningful values (corresponding to the current configuration) would be

used for the simulation .

It is easy to see that the number of input nodes for representing a configuration at

each level is bounded by c1 · s for some constant c1 = O(|Q|+ |Γ|). Then it is clear that

the number of gates at each level is also bounded by c2 · c1 · s, where c2 is a constant

determined by the complexity of M’s transition function, which is O(|Q| · |Γ|). Since there
are timeM(`) number of levels and s ≤ timeM(`), the total number of gates in C` is bounded

by c2.1cM(timeM(`))
2 for some constant c2.1 ≥ 1 (independent from the choice of M) and

cM = (|Q|+ |Γ|) · |Q| · |Γ|. Then the theorem follows.

Now consider the other direction of Theorem 2.1. Can we simulate a family of circuits

by a Turing machine? The answer is ‘No’ due to the “nonuniformity”, which is another

important feature of the circuit model. Consider any circuit family C = {C`}`≥1 for

solving a given problem L. Our definition does not require the relation between members

C1, C2, . . . of C (except that each C` must solve L on {0, 1}`). Thus, they may be quite

unrelated. In particular, we do not have to show how to construct each C` for a given `.

Therefore, for example, the following fact is quite easy to show.

Fact For any function t : Z+ → Z+, there exists a circuit family {C`}`≥1 that solves a

problem L 6∈ TIME(t(`)).

Notice, however, that we usually consider a quite constructive way to define circuits

when we design a circuit family for solving a given problem. For example, a circuit family

explained above for simulating a given M can be constructed quite efficiently from the

description of M.

2.3 The RAM model

Although we will mainly use the Turing machine model and the circuit model as a model of

computation, let us see one more computation model, “Random Access Machine” (abbrev.

RAM). This model is intuitively much closer to standard computers executed by machine

codes. Here we consider a RAM model similar to the model used in [2].

Definition 2.5 A random access machine RM consists of registers and memory cells as

in Figure 2.4. It is specified by a three tuple (k, `wd(`), P), where

• k is the number of registers.

• `wd : Z+ → Z+ is the word size bound, i.e., the max. number of bits stored in a

memory cell or a register.

• P is a program in an assembly language.

Although we do not define our assembly language precisely, we note several important

points.

1. RAMs are in general used to compute functions mapping Z+ to Z+. For using a RAM

for solving a decision problem on {0, 1}∗, we assume that an input string is converted to

an integer by adding 1 to its front and that the machine always output either 0 or 1.

2. The execution of a RAM starts from the first line of its program with an input integer

in the first memory cell, i.e., the cell with address 0. The execution terminates when it

4

executes the halt statement, and we regard the argument of the halt statement as the

output.

3. Each line of RAM’s program is a simple instruction, including an arithmetic operation

to one of its registers. Arithmetic operations are limited to the addition and subtraction,

and the general multiplication or division is not allowed so that we can guarantee that

the bit length of an integer in a register increases at most t after executing t lines.

4. Each memory cell is given a unique integer address, which is used to refer this memory

cell. For example, the instruction “add#1 [#2]” means to add to the register #1 the

value of the memory cell whose address is specified by the register #2. It is easy to see

that an array can be implemented by using this address system.

5. One big difference from ordinary computers is that the word size bound is not fixed

in advance; in fact, we can use a function on the input size to determine it. But since

the bit length of each data would not increase so rapidly, we do not have to use a large

function for the word size bound (see Remark of Theorem 2.2).

A random access machine RM specified by (3, `wd(`), P), where `wd(`) is the word

length determined by the input length `.

Figure 2.4 A random access machine RM

For any RAM RM, in order to discuss its computational efficiency, we introduce the

following two functions:

ram timeRM(x) = the number of lines of RM on x executed until it terminates, and

ram spaceRM(x) = the number of memory cells that RM uses on x.

Then we have the following relation between Turing machines and RAMs.

Theorem 2.2 There exists some constant c2.2 with the following property. For any RAM

RM = (k, `wd(`), P), we can construct a Turing machine M that simulates RM and satisfies

5

the following for any input x:

timeM(x) ≤ c2.1(`wd(|x|)ram timeRM(x)) · ram timeRM(x), and

spaceM(x) ≤ c2.1`wd(|x|)ram spaceRM(x).

Remark: Due to our restriction of the instruction set of RAM programs, we can show

that the bit-length of numbers in registers and memory cells in the execution of RM(x) is

at most |x|+ ram timeRM(x). Thus, it does not make sense to consider `wd(`) larger than

`+ ram timeRM(`). Therefore, the above time bound at most O(ram timeRM(`)
3).

2.4 Universaly Turing machine or Interpreter

One of the important features common in these computation models is that there is a

way to encode each machinery by a binary sequence, which we usually call a program (or,

a program description).

For example, as we discussed in the last lecture, any Turing machine M is specified by

M = (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q is a finite set of states, Σ is a finite set of input

symbols, ... and so on. It is not so difficult to see that this can be expressed by a string

of some finite length, which is encoded in a string in {0, 1}∗. This can be regarded as

a “program” expressing M. Note that “program” can be treated separately in the RAM

model while a whole machine (or a circuit family) is considered as a program in the Turing

machine (resp., the circuit) model.

Here we can naturally consider an “interpreter”, a program that interprets a given pro-

gram description and execute it on a given input (to the program). In the Turing machine

model, it is usually called a universal Turing machine. This is one of the most funda-

mental notion in Theory of Computing and even in Computer Science and Engineering

in general.

Let us consider this notion more carefully. For this we need to fix our way to encode pro-

grams, i.e., Turing machines. Consider any Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject).

We can simply use nonnegative integers (encoded by the binary representation) for mem-

bers of Q and Γ; thus, we only need to specify q = |Q| and g = |Γ|. We may assume that

Σ = {0, 1}, q0 is the first state, i.e., state 0, and qaccept and qreject are the last two states

respectively. Since δ is a function from (Q−{qaccept, qreject})×Γ to (Γ−{ })×{L,R}, we
can encode it by {0, 1}∗ as illustrated in Figure 2.5. Let δ denote this binary encoding of

δ. In summary, M is encoded as 〈q, g, δ〉 in {0, 1}∗, which is referred as M in the following.

(More specifically, we assume some simple encoding of a tuple of binary strings as a single

binary string. For example, 〈010, 10, 0101〉 can be expressed as 001100101100100101.)

6

An encoding of M with q = |Q| = 4 and g = |Γ| = 3. We assume that q2 and q3 are

accepting and rejecting states (i.e., halting states) respectively, and hence δ(q2,−,−)

and δ(q3,−,−) are undefined. Since |Γ| = 3, we can encode each nonblank symbol

by 1 bit. Similarly, each state is encoded by 2 bits. R and L are denoted as 0 and 1

respectively.

Figure 2.5 An encoding of δ in {0, 1}∗

Now we are ready to define the notion of “universal Turing machine.”

Definition 2.6 A universal Turing machine is a Turing machine Meval that takes 〈M, x〉,
x ∈ {0, 1}∗ as an input and simulate the execution of M on x.

Remark: If M(x) does not terminate, then so does Meval on 〈M, x〉.

Theorem 2.3 There exists a universal Turing machine Meval such that for any Turing

machine M and for any x ∈ {0, 1}∗, it simulates M(x) with the following efficiency for a

constant cM determined by M:

timeMeval(〈M, x〉) ≤ cMtimeM(x).

Remark: Interestingly, it seems difficult (maybe impossible) to get a similar linear bound

in the case of RAM model.

The following figure illustrates the idea of the proof. Although the machine uses three

tapes for the sake of simplicity, we can show that the simulation can be executed by using

a single tape by increasing the running time by only a constant factor.

A snapshot of Meval on 〈M, x〉, where M = 〈q, g, δ〉 and x = 0100. For a simple ex-

planation, three tapes are used; the first one for keeping δ of M, the second one for

small counting, and the third one for the actual simulation. This snapshot shows the

situation when Meval has separated M from the input and it is ready for the simulation.

Figure 2.6 The idea of the universal Turing machine Meval

A time bounded universal Turing machine

We often need a Turing machine interpreter that can stop the computation when the

number of moves exceeds a given time bound.

Theorem 2.4 There exists a Turing machine Meval in time such that for any Turing machine

M, for any x ∈ {0, 1}∗, and for any t ≥ 1, (i) Meval in time(〈M, 0t, x〉) simulates M(x) up to t

7

moves (and rejects the input if M(x) does not terminate in t moves), and (ii) it has the

following efficiency for a constant cM determined by M:

timeMeval in time
(〈M, 0t, x〉) ≤ cMmin{ timeM(x), t } log t.

The idea is to introduce a counter that is set t and decremented by 1 after the simulation

of each move of M. Again for simplicity, we may keep it as an additional work tape. If we

keep it in the unary representation, then the decrement can be done in constant steps.

But we cannot (so far) simulate the computation by a one-tape Turing machine better

than Theorem 1.1, and the above time bound cannot be obtained. On the other hand, if

we keep it in the binary representation, we need O(log t) steps for the decrement. But we

can express the counter by O(log t) bits, which enable us to implement the time bounded

computation in O(timeM(x) · log t) moves.

Lecture 3. Complexity Classes and Time/Space Hierarchy Theorems

We discuss the first basic theorem in computational complexity theory, namely, Time and

Space Hierarchy Theorems.

3.1 Introduction

Let us recall the following basic complexity classes [1:Def. 7.7, Def. 8.2].

Definition 1.5 For any t, s : Z+ → Z+, the time and space complexity classes,

TIME(t(`)) and SPACE(s(`)), are defined as follows.

TIME(t(`)) = {L |L is an O(t(`))-time solvable problem }.
SPACE(s(`)) = {L |L is an O(s(`))-space solvable problem }.

Below we use the “small ω” notation, which is defined as follows: for any functions

f, g : Z+ → Z+, we say g(n) = ω(f(n)) if we have

∀c > 0, ∃nc, ∀n > nc [g(n) > cf(n)].

Now we are ready to state Time Hierarchy Theorems. (Space Hierachy Theorem is

similar but omitted here.)

Theorem 3.1 (Time Hierarchy Theorem)

For any functions t1, t2: Z+ → Z+, if t2(`) = ω(t1(`) log t1(`)), then we have

TIME(t1(`)) ⊂6= TIME(t2(`)).

Remark: Precisely speaking, we require t1 to be “time constructible.” Intuitively, a time

constructible function is a natural function for a time bound. We omit explaining this

notion; see [1:Def. 9.8].

Rererences:

1. M. Sipser, Introduction to the Theory of Computation (2nd edition), Thomson Course

Technology, 2006, ISBN:0-534-95097-3.

2. 渡辺治，今度こそわかる P 6= NP 予想，講談社，2014，ISBN:978-4-06-156600-2.

8

