
Complexity 2017.10.30

No Class on Nov. 2nd

Lecture 10. Some More Complexity Classes

10.1 Relativized complexity classes

The heart of polynomial-time reductions is to provide a way to design an algorithm for

some problem A based on an assumed program for another problem B. Let us generalize

this idea. Consider any problem X, and assume that X is solvable magically in O(1) time.

Then by using this assumed program for X, we design an algorithm for a given problem

Y . If some program IsY solves Y in polynomial time by using the assumed program for

X as a subroutine, then we say that Y is polynomial-time solvable relative to X. In other

words, IsY is regarded as a program solving Y by asking queries to some oracle for X, an

imaginary mechanism that can answer the question y ∈ X? instantly for any given y.

For any problem X, we define a class PX to be the set of problems that are polynomial-

time solvable relative to X. Classes NPX , coNPX , ... are defined similarly. These classes

are called relativized complexity classes.

Relativized classes are usually used to discuss important open questions such as P 6=
NP? in relativized worlds. But we can use this mechanism to define new complexity

classes. For any complexity class C, PC is the set of problems solvable in polynomial

time relative to some problem in C. For example, the class PNP is one of the important

complexity classes because this is the class corresponding to optimization problems related

naturally to NP problems. (Here and in the following, we would sometimes use P (and

in general, class PX) to denote the class of polynomial-time computable functions (resp.,

relative to X).)

Here is an example of such optimization problems.

Max. Clique Problem (MaxCLIQUEnum)

Instance: An undirected graph G.

Question: What is the size of the largest clique (i.e., complete subgraph) of G?

This is the problem that we saw at the first lecture. Remember at that time I explained

that we could argue using the following decision problem because their computational

difficulties are almost the same.

Max. Clique Problem (decision version; abbreviated as CLIQUE)

Instance: A pair 〈G, k〉 of an undirected graph G and an integer k ≥ 1.

Question: Does G have a clique of size ≥ k?

However, precisely speaking, MaxCLIQUEnum is located in PNP while CLIQUE is

located in NP. And indeed we believe NP 6= PNP, and furthermore, MaxCLIQUEnum is

a complete problem for PNP. Thus, there is a difference!! But we have

P = NP ⇔ CLIQUE ∈ P ⇔ MaxCLIQUEnum ∈ P,
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and in this sense, these two problems can be regarded as problems with the almost same

computational hardness w.r.t. P.

In general, the class PNP is important for discussing the complexity of computing a

“solution”, that is, in our word, a witness for a positive instance. For example, the

following problems.

3SAT Search Problem (search3SAT)

Instance: A 3CNF formula F .

Task: Find one of the satisfying assignments of F .

(Output ‘no’ if F has no sat. assignment.)

Hamiltonian Circuit Search Problem (searchHAM)

Instance: An undirected graph G = (V,E), and s, t ∈ V .

Task: Find a Hamiltonian circuit.

(Output ‘no’ if F has no sat. assignment.)

10.2 The Polynomial-time Hierarchy and alternating complexity classes

Some of relativized complexity classes such as PNP, NPNP, etc., are also important for

investigating some concrete problems. But classes like NPNP are not so easy to understand,

at least not so intuitive. One way to get better understanding is to give a different

formalization to these classes. For this we extend our definition of NP.

We simply generalize the NP-condition used to define the class

classNP . For example, consider the following condition.

x ∈ L ⇔ ∃u : |u| ≤ qL(|x|), ∀v : |v| ≤ qL(|x|) [ RL(x, u, v) ].

A new complexity class Σp
2 is the class of problems defined in this way with some polyno-

mial qL and polynomial-time computable predicate RL. Similarly, classes Σp
3, Σ

p
4, ..., and

classes Πp
2, Π

p
3, ..., are defined using the following generalized NP-conditions.

Σp
3 : x ∈ L ⇔ ∃qLu1,∀qLv1,∃qLu2 [ RL(x, u1, v1, u2) ]

Σp
4 : x ∈ L ⇔ ∃qLu1,∀qLv1,∃qLu2,∀qLv2 [ RL(x, u1, v1, u2, v2) ]

...

Πp
2 : x ∈ L ⇔ ∀qLv1, ∃qLu1 [ RL(x, v1, u1) ]

Πp
3 : x ∈ L ⇔ ∀qLv1, ∃qLu1,∀qLv2 [ RL(x, v1, u1, v2) ]

...

Below we will use the following notation. (Note that, by changing RL appropriately,

we may assume that witnesses are of the same polynomial length.)

∃qLvi ⇐ ∃vi ∈ {0, 1}∗ : |vi| = qL(|x|), ∀qLui ⇐ ∀ui ∈ {0, 1}∗ : |ui| = qL(|x|).

Now using these classes, we can give the following characterization.

Theorem 10.1 (Wrathall ’77 and Stockmeyer ’77)

NPNP = Σp
2, coNPNP = Πp

2, NPNPNP

= Σp
3, coNPNPNP

= Πp
3, ...
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Proof by Idea. We show that NPNP ⊆ Σp
2.

Consider any problem L in NPNP. Then there exist some relativized polynomial-time

nondeterministic program A solving L by using some NP problemX as an oracle. Consider

the computation of A on any input x of length `, and let us formulate this computation by

the Σp
2 type formula. For the simplicity, we assume here that A asks exactly two queries

on each computation path; moreover, assume that both queries are of length `1, where `1
is polynomially bounded by `.

Each computation path is expressed by some binary string w of some fixed length p1,

where again p1 is polynomially bounded by `. If A were an ordinary nondeterministic

program, its computation should be determined by such a binary string w. But since

it makes two queries, the computation is not “easily” determined without knowing the

answers of the oracle X to these queries. In fact, even the second query string may not

be polynomial-time computable without knowing the answer to the first query. So, let

us “guess” these two queries and the answers of X to them; note that each answer is

expressed by one bit. That is, we express the computation of A(x) as follows.

A accepts x (that is, x ∈ L)

⇔ ∃w ∈ {0, 1}p1 , ∃y1, y2 ∈ {0, 1}`1 , ∃b1, b2 ∈ {0, 1}

(1) [ the first query of A on the path w is y1 ]

∧ (2) [ the second query of A on the path w and with the answer b1 is y2 ]

∧ (3) [ A outputs 1 on w and with the assumed answers b1 and b2 ]

∧ (4) [ the first query y1 gets ‘yes’ answer from X iff b1 = 1 ]

∧ (5) [ the second query y2 gets ‘yes’ answer from X iff b2 = 1 ]


It is easy to see that (1) ∼ (3) can be checked deterministically in polynomial time.

On the other hand, this may not be the case for (4) and (5) because X ∈ NP. But, for

example, (4) can be expressed as follows with some qX and RX .

(4) ⇔ [ b1 = 1 ∧ [ y1 ∈ X ] ] ∨ [ b1 = 0 ∧ [ y1 6∈ X ] ]

⇔ [ b1 = 1 ∧ ∃qX(`1)u1 [RX(y1, u1) ] ] ∨ [ b1 = 0 ∧ ∀qX(`1)v1 [¬RX(y1, v1) ] ]

⇔ ∃qX(`1)u1, ∀qX(`1)v1 [ [ b1 = 1 ∧RX(y1, u1) ] ∨ [ b1 = 0 ∧ ¬RX(y1, v1) ]︸ ︷︷ ︸
(4′)

]

Hence, as a whole, we can restate “A accepts x” by the following Σp
2-type formula.

∃p1w,∃`1y1, y2,∃1b1, b2,∃qX(`1)u1, u2, ∀qX(`1)v1, v2 [ (1) ∼ (3) ∧ (4′) ∧ (5′) ].

tu

We may regard NP = Σp
1 and coNP = Πp

1. Also define Σp
0 = Πp

0 = P. For relativized

classes like PNP, we introduce the class ∆p
k = PΣp

k−1 . Then the following relationship holds

from the definition or as a corollary of Theorem 9.1.

Corollary 10.2

P = Σp
0 = Πp

0 ⊆ NP = Σp
1, coNP = Πp

1 ⊆ Σp
2,Π

p
2 ⊆ Σp

3,Π
p
3 ⊆ · · ·

Corollary 10.3 Σp
k−1 ∪ Πp

k−1 ⊆ ∆p
k ⊆ Σp

k ∩ Πp
k.
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Polynomial-time hierarchy PH is defined to be the union of these Σp
k classes.

Notice that the order of quantifiers cannot be changed in general (unless they are of the

same type). Thus, from our Σp
2 formulation of NPNP, it is clear that NP 6= NPNP unless

NP = Πp
1 (= coNP). In fact, it is easy to see that NP = NPNP (and thus, the whole PH

collapses NP) if and only if NP = coNP.

Corollary 10.4 NP = coNP ⇔ NP = PH. In general, Σp
k = Πp

k ⇔ Σp
k = PH.

The alternation of quantifiers can be viewed as a play of some two player game. For

example, consider the following quantified Boolean formula satisfiability problem Q.

Quantified Boolean Formula satisfiability Problem (QBF-SAT)

Instance: A formula of the form

Q = ∃qu1, ∀qv1, ∃qv2, ∀qu2 [ Φ(x, u1, v1, u2, v2) ] .

Question: Is this Q satisfiable?

The existential quantifier is for (the choice of) you, and the universal quantifier is for

(the choice of) the opponent. The goal of the game (from your point of view) is to make

Φ true; on the other hand, your opponent’s goal is to make Φ false. The number of

alternations can be regarded as the number of turns (or the depth) of the game. (Here

for the simplicity, we assume that every formula starts with an existential quantifier and

ends with an universal quantifier.)

Let us call this game an alternating satisfying game (over a polynomial-time Boolean

predicate). Note that each game is defined by a predicate Φ that, we assume, polynomial-

time computable, and each play of the game is defined by a given input x. We say that

an alternating satisfying game solves a problem L if x ∈ L if and only if the ∃-player wins
at the play for x. We can further generalize this two player alternating satisfying game

so that the depth of each play is not constant but d(|x|) on each input x for some given

function. With this computation model, we can introduce the following new complexity

class.

ADepth(d) =

{
L :

L is solvable by some alternating satisfying game

whose game depth is d(|x|) on each input x

}
.

Then we have PH = ADepth(O(1)). What is interesting here is that the class PSPACE

is characterized in the following way.

Theorem 10.5 PSPACE =
∪

p:poly ADepth(p).

Proof. Consider any problem L in PSPACE, and let A be a deterministic program solving

L, whose space complexity is bounded by some polynomial p.

Consider the execution of A on any input of length `. Since strings kept in A’s each

register is at most of p(`) bits, the state of the program at each step can be expressed by

a binary string of length q = cp(`) for some constant c > 0. In fact, with these states

and direct edges connecting them, we can express the computation of A on all inputs of

length ` as a graph GA,`.

More specifically, the graph GA,` consists of vertices corresponding states, each of which

is labeled by binary string in {0, 1}q, and the graph has an edge from one vertex S1 to
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another S2 if and only if the execution of A moves from S1 to S2 in one step. Then for any

input x ∈ {0, 1}`, we have x ∈ L if and only if there is a path from the initial vertex for

x, the vertex corresponding to the initial state of A(x), to the accepting vertex, a vertex

corresponding to the halting state yielding 1 (i.e., ‘yes’). Notice here that the length of

such an accepting path is at most 2q; in fact, we may assume that the length is exactly

2d(`) for some polynomial d.

Now with this graph, we define an alternating satisfying game for simulating A on x for

any given x ∈ {0, 1}`. Intuitively, you want to convince the opponent that there is a path

from the initial vertex S0 for x to the accepting vertex Sacc. For this, you point out the

vertex S1 that is located exactly at the middle of the path. Then the opponent asks you

to show either (i) there is a path from S0 to S1, or (ii) there is a path from S1 to Sacc.

In other words, the opponent’s move is either 0 indicating (i) or 1 indicating (ii). Then

depending on this move, you show for S2 either (0) the vertex located at the middle of

S0 and S1, or (1) the vertex located at the middle of S1 and Sacc. The play proceeds in

this way for d(`) − 1 pairs of moves. Then after these moves (if your choices have been

correct), there must be an edge between the current vertices Si and Sj, i.e., A moves from

Si to Sj in one step. (The indices i and j are determined easily from the sequence of the

opponent moves.)

Since you cannot predict this opponent’s move in advance, you have to give the correct

middle vertex for S1, and so on; otherwise, the opponent certainly finds the problematic

part. In particular, if there is no accepting path for a given x, then you cannot win the

game no matter how you choose moves. Therefore, we have the following relation, which

proves that L ∈ ADepth(d′) for d′(n) = 2d(n)− 2.

x ∈ L ⇔ ∃S1,∀v1 ∈ {0, 1}, ∃S2, ∀v2 ∈ {0, 1}, ...∃Sd(`)−1,∀vd(`)−1 ∈ {0, 1} [ Si ⇒A Sj ].

tu

One remark here. The class ADepth(d) is introduced for the explanation in this lecture,

and it is not commonly used. Standard complexity classes related to this ADepth(d) is

alternating complexity classes that are defined by using alternating computation, which

is a generalization of nondeterministic computation.
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Homework exercise from Lecture 10

Homework rule: Choose one of the following problems, and hand your answer in at the

next class (i.e., Nov. 6th, i.e., the next week). (If you cannot attend the next class, please

submit your answer via email before the class.) Since we have one week this time, you

can solve more than one problem (if you like) to get more points.

* For writing an answer, you may use Japanese.

Basic problems

1. Prove that if NP = coNP, then NP = PH.

An advanced problem

1. Suppose that NP = coNP and prove formally∗ that the following Lexfirst3SAT prob-

lem is in NP. (∗ Need to prove based on the definition of the class NP.)

Lexfirst3SAT

Instance: 3CNF formula F over n variables, and an integer i, 1 ≤ i ≤ n.

Question: What is the ith bit of the lexicographically the first satisfying assignment

of F? (Yes/No ⇔ 1/0)

2. Prove that the above Lexfirst3SAT problem is complete for PNP. That is, every

problem in PNP is ≤P
m-reducible to Lexfirst3SAT.
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