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Lecture 8. Randomized Complexity Classes

8.1 A randomized computation model

For studying randomized algorithms, we introduce a randomized Turing machine, which

is a standard Turing machine equipped with a random source tape. The tape head of this

tape can move only to the right reading one bit from the tape. Before the execution, we

assume that a random binary sequence (which we call a random source) is given on this

tape. For each such Turing machine M, we use rM(ℓ) to denote an upper bound of the

length of a random source consumed by the machine on length ℓ inputs, which we call

a random source length bound. Clearly, we have rM(ℓ) ≤ timeM(ℓ). For any ℓ, any input

x ∈ {0, 1}ℓ, and any u ∈ {0, 1}rM(ℓ), let M(x;u) denote the output of M when it is executed

with x on its input tape and u on its random source tape. We will sometimes use M(x;u)

to mean “the execution of M on input x and random source u.”

We define the probability that the randomized Turing machine M outputs y on input

x (denoted as the left hand side, or, more simply (or more explicitly, PrM[ M(x) = y ]) as

follows:

Pr
u
[ M(x;u) = y ] =

∥∥∥ {
u ∈ {0, 1}rM(ℓ) | M(x;u) = y

}∥∥∥
2rM(ℓ)

.

Note that a random binary string u is the source of the randomness used by M; for any

event on the execution of M on a given input x, we define its probability in the same way.

For example, we can define the average running time of M on a given input x as follows.

Eu[ timeM(x) ] =
∑
t≥1

t · Pr
u
[ M(x;u) terminates after the tth move ].

8.2 Randomized complexity classes

There are several ways to interpret the output of a randomized Turing machine. For any

problem L, we consider here the following ways to solve L. (Note that L is a subset of

{0, 1}∗; recall that we identify a decision problem with a set of ‘yes’ instances.)

(M barely solves L)

x ∈ L ⇒ PrM{ M(x) = 1 } > 1/2,

x ̸∈ L ⇒ PrM{ M(x) = 0 } > 1/2.
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Bounded error: (M solves L in BP-style)

x ∈ L ⇒ PrM{ M(x) = 1 } ≥ 2/3,

x ̸∈ L ⇒ PrM{ M(x) = 0 } ≥ 2/3.

One sided error: (M solves L in R-style)

x ∈ L ⇒ PrM{ M(x) = 1 } ≥ 2/3,

x ̸∈ L ⇒ PrM{ M(x) = 0 } = 1.

One sided error: (M solves L in coR-style)

x ∈ L ⇒ PrM{ M(x) = 1 } = 1,

x ̸∈ L ⇒ PrM{ M(x) = 0 } ≥ 2/3.

Zero error: (M solves L in ZP-style)

x ∈ L ⇒ PrM{ M(x) = 1, } = 1,

x ̸∈ L ⇒ PrM{ M(x) = 0 } = 1.

Then define the following “standard” randomized complexity classes1.

BPP = {L | ∃ poly. time M solves L in BP-style },
RP = {L | ∃ poly. time M solves L in RP-style },
coRP = {L | ∃ poly. time M solves L in coRP-style },
ZPP = {L | ∃ average poly. time M solves L in ZPP-style }.

The following class is a bit different from the above classes because problems in this

class may be still much more difficult than P. That is, the PP-style solvability is too weak

to guarantee that the polynomial-time (or almost polynomial-time) tractability.

PP = {L | ∃ poly. time M solves L in PP-style }.

Note here that the choice of the threshold 2/3 is not so essential w.r.t. the polynomial-

time computability. We can increasing correct probability quite easily stated as follows.

Lemma 8.1 (Correct probability amplification lemma)

For any decision problem L, suppose that we have a randomized M that solves L in BP-

style. For any m ≥ 1 (assuming odd), let M(m) be a randomized Turing machine that, for

a given input x, executes M(x) for m times independently and outputs the majority of the

outputs of M(x). Then for any input x, we have

Pr
M(m)

[
M(m)(x) ̸= L(x)

]
≤ 2−m/32.

This can be proved by using the following fact.

Fact (Chernoff bound) Consider independent random variablesX1, . . . , Xn such that each

Xi takes value 1 with probability p and value 0 with probability 1− p. Let X =
∑n

i=1 Xi

and µ = pn. Then we have the following probability bounds.

Pr[ X > (1 + ε)µ ] ≤ exp(−µε2/3),

Pr[ X < (1− ε)µ ] ≤ exp(−µε2/2)

1The class ZPP is defined in a different way in the Japanese textbook.
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8.3 Complexity analysis of randomized complexity classes

Note that the solvability condition has the following order: ZPP-type ⇒ R-type, co-Rtype

⇒ BP-type ⇒ PP-type, from which the following relations are immediate.

Theorem 8.2

P ⊆ RP, coRP ⊆ BPP ⊆ PP.

Though not trivial as above, the following relations are also easy.

Theorem 8.3

ZPP = RP ∩ coRP.

Intuitively we think that BPP (and its subclasses) is close to the class P. In fact,

we may even conjecture that P = BPP. We show some justification for this conjecture.

Recall2 that PSIZE is the class of problems solvable by polynomial-size circuits. Due to

the nonuniformity of our circruit model, we have PSIZE − P ̸= ∅, intuitively, we may

think that they are very close complexity classes. By using this class, we can also show

that BPP is close to P.

Theorem 8.4

BPP ⊆ PSIZE.

Proof. Consider any problem L in BPP, and let M be a polynomial-time randomized

Turing machine that solves L in BP-style. By the correct probability amplification lemma,

we can define M1 whose error probability is less than 2−ℓ. We may assume that M1 is still

polynomial-time and hence the random source length bound is also polynomial.

Consider any input length ℓ, and let r = rM1(ℓ) be the length of a random source used

by M1 on any input of length ℓ. (For some input, M may not use all bits of a given random

source.) Then by using the fact that the error probability is less than 2−ℓ we can show

that there exists a random source uℓ with which M1 does not make any error; that is,

M1(x;uℓ) = L(x) for all x ∈ {0, 1}ℓ. We call this uℓ a universal sequence. Then using this

universal sequence, we can define a circuit Cℓ for the problem L on inputs of length ℓ. A

family of circuits are defined by using such Cℓ’s for all ℓ ≥ 1.

Homework exercise from Lecture 8

Homework rule: Choose one of the basic problems or the advanced prolem, and hand

your answer in at the next class (for the basic problem) and at the next2 class (for the

advanced problem). (If you cannot attend the next class, you can submit your answer via

email before the class.) You do not have to write a long answer. Usually one page would

be enough. I will decide OK or NG, and you can get one point (for a basic problem) and

two points (for an advanced problem) by each OK answer.

* For writing an answer, you may use Japanese.

2I might have forgot to defining this class; if not, then (sorry and) take this as the definition of PSIZE.

3



Basic problems

1. Prove Lemma 8.1.

2. Prove that ZPP ⊆ RP ∩ coRP.

3. Prove that ZPP ⊇ RP ∩ coRP.

An Advanced problem

1. In the proof of Theorem 8.4, we can also define M2 such that the 99% of its random

sources are in fact universal sequences. In other words, almost all random sources are

universal. Explain how to define M2 and why.
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