Lecture 8. Randomized Complexity Classes

8.1 A randomized computation model

For studying randomized algorithms, we introduce a randomized Turing machine, which is a standard Turing machine equipped with a random source tape. The tape head of this tape can move only to the right reading one bit from the tape. Before the execution, we assume that a random binary sequence (which we call a random source) is given on this tape. For each such Turing machine M , we use $r_{\mathrm{M}}(\ell)$ to denote an upper bound of the length of a random source consumed by the machine on length ℓ inputs, which we call a random source length bound. Clearly, we have $r_{M}(\ell) \leq \operatorname{time}_{M}(\ell)$. For any ℓ, any input $x \in\{0,1\}^{\ell}$, and any $u \in\{0,1\}^{r_{\mathrm{M}}(\ell)}$, let $\mathrm{M}(x ; u)$ denote the output of M when it is executed with x on its input tape and u on its random source tape. We will sometimes use $\mathrm{M}(x ; u)$ to mean "the execution of M on input x and random source u."
We define the probability that the randomized Turing machine M outputs y on input x (denoted as the left hand side, or, more simply (or more explicitly, $\operatorname{Pr}_{\mathrm{M}}[\mathrm{M}(x)=y]$) as follows:

$$
\operatorname{Pr}_{u}[\mathrm{M}(x ; u)=y]=\frac{\left\|\left\{u \in\{0,1\}^{r_{\mathrm{M}}(\ell)} \mid \mathrm{M}(x ; u)=y\right\}\right\|}{2^{r_{\mathrm{M}}(\ell)}} .
$$

Note that a random binary string u is the source of the randomness used by M; for any event on the execution of M on a given input x, we define its probability in the same way. For example, we can define the average running time of M on a given input x as follows.

$$
\mathrm{E}_{u}\left[\operatorname{time}_{\mathrm{M}}(x)\right]=\sum_{t \geq 1} t \cdot \operatorname{Pr}_{u}[\mathrm{M}(x ; u) \text { terminates after the } t \text { th move }]
$$

8.2 Randomized complexity classes

There are several ways to interpret the output of a randomized Turing machine. For any problem L, we consider here the following ways to solve L. (Note that L is a subset of $\{0,1\}^{*}$; recall that we identify a decision problem with a set of 'yes' instances.)
(M barely solves L)

$$
\begin{aligned}
x \in L & \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=1\}>1 / 2, \\
x \notin L & \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=0\}>1 / 2 .
\end{aligned}
$$

Bounded error: (M solves L in BP-style)

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=1\} \geq 2 / 3, \\
& x \notin L \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=0\} \geq 2 / 3 .
\end{aligned}
$$

One sided error: (M solves L in R-style)

$$
\begin{aligned}
x \in L & \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=1\} \geq 2 / 3, \\
x \notin L & \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=0\}=1 .
\end{aligned}
$$

One sided error: (M solves L in coR-style)

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=1\}=1 \\
& x \notin L \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=0\} \geq 2 / 3 .
\end{aligned}
$$

Zero error: (M solves L in ZP-style)

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=1,\}=1, \\
& x \notin L \Rightarrow \operatorname{Pr}_{\mathrm{M}}\{\mathrm{M}(x)=0\}=1 .
\end{aligned}
$$

Then define the following "standard" randomized complexity classes ${ }^{1}$.

$$
\begin{aligned}
& \mathrm{BPP}=\{L \mid \exists \text { poly. time M solves } L \text { in BP-style }\}, \\
& \mathrm{RP}=\{L \mid \exists \text { poly. time } \mathrm{M} \text { solves } L \text { in RP-style }\}, \\
& \text { coRP }=\{L \mid \exists \text { poly. time } \mathrm{M} \text { solves } L \text { in coRP-style }\} \text {, } \\
& \text { ZPP }=\{L \mid \exists \text { average poly. time } \mathrm{M} \text { solves } L \text { in ZPP-style }\} \text {. }
\end{aligned}
$$

The following class is a bit different from the above classes because problems in this class may be still much more difficult than P. That is, the PP-style solvability is too weak to guarantee that the polynomial-time (or almost polynomial-time) tractability.

$$
\mathrm{PP}=\{L \mid \exists \text { poly. time M solves } L \text { in PP-style }\} .
$$

Note here that the choice of the threshold $2 / 3$ is not so essential w.r.t. the polynomialtime computability. We can increasing correct probability quite easily stated as follows.

Lemma 8.1 (Correct probability amplification lemma)
For any decision problem L, suppose that we have a randomized M that solves L in BPstyle. For any $m \geq 1$ (assuming odd), let $\mathrm{M}^{(m)}$ be a randomized Turing machine that, for a given input x, executes $\mathrm{M}(x)$ for m times independently and outputs the majority of the outputs of $\mathrm{M}(x)$. Then for any input x, we have

$$
\operatorname{Pr}_{\mathrm{M}^{(m)}}\left[\mathrm{M}^{(m)}(x) \neq L(x)\right] \leq 2^{-m / 32}
$$

This can be proved by using the following fact.
Fact (Chernoff bound) Consider independent random variables X_{1}, \ldots, X_{n} such that each X_{i} takes value 1 with probability p and value 0 with probability $1-p$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=p n$. Then we have the following probability bounds.

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\varepsilon) \mu] & \leq \exp \left(-\mu \varepsilon^{2} / 3\right), \\
\operatorname{Pr}[X<(1-\varepsilon) \mu] & \leq \exp \left(-\mu \varepsilon^{2} / 2\right)
\end{aligned}
$$

[^0]
8.3 Complexity analysis of randomized complexity classes

Note that the solvability condition has the following order: ZPP-type \Rightarrow R-type, co-Rtype \Rightarrow BP-type \Rightarrow PP-type, from which the following relations are immediate.

Theorem 8.2

$$
\mathrm{P} \subseteq \mathrm{RP}, \operatorname{coRP} \subseteq \mathrm{BPP} \subseteq \mathrm{PP}
$$

Though not trivial as above, the following relations are also easy.

Theorem 8.3

$$
\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP} .
$$

Intuitively we think that BPP (and its subclasses) is close to the class P. In fact, we may even conjecture that $\mathrm{P}=\mathrm{BPP}$. We show some justification for this conjecture. Recall ${ }^{2}$ that PSIZE is the class of problems solvable by polynomial-size circuits. Due to the nonuniformity of our circruit model, we have PSIZE - P $\neq \emptyset$, intuitively, we may think that they are very close complexity classes. By using this class, we can also show that BPP is close to P .

Theorem 8.4

$$
\mathrm{BPP} \subseteq \mathrm{PSIZE}
$$

Proof. Consider any problem L in BPP, and let M be a polynomial-time randomized Turing machine that solves L in BP-style. By the correct probability amplification lemma, we can define M_{1} whose error probability is less than $2^{-\ell}$. We may assume that M_{1} is still polynomial-time and hence the random source length bound is also polynomial.

Consider any input length ℓ, and let $r=r_{\mathrm{M}_{1}}(\ell)$ be the length of a random source used by M_{1} on any input of length ℓ. (For some input, M may not use all bits of a given random source.) Then by using the fact that the error probability is less than $2^{-\ell}$ we can show that there exists a random source u_{ℓ} with which M_{1} does not make any error; that is, $\mathrm{M}_{1}\left(x ; u_{\ell}\right)=L(x)$ for all $x \in\{0,1\}^{\ell}$. We call this u_{ℓ} a universal sequence. Then using this universal sequence, we can define a circuit C_{ℓ} for the problem L on inputs of length ℓ. A family of circuits are defined by using such C_{ℓ} 's for all $\ell \geq 1$.

Homework exercise from Lecture 8

Homework rule: Choose one of the basic problems or the advanced prolem, and hand your answer in at the next class (for the basic problem) and at the next ${ }^{2}$ class (for the advanced problem). (If you cannot attend the next class, you can submit your answer via email before the class.) You do not have to write a long answer. Usually one page would be enough. I will decide OK or NG, and you can get one point (for a basic problem) and two points (for an advanced problem) by each OK answer.

* For writing an answer, you may use Japanese.

[^1]
Basic problems

1. Prove Lemma 8.1.
2. Prove that $\mathrm{ZPP} \subseteq \mathrm{RP} \cap \mathrm{coRP}$.
3. Prove that $\mathrm{ZPP} \supseteq \mathrm{RP} \cap \mathrm{coRP}$.

An Advanced problem

1. In the proof of Theorem 8.4, we can also define M_{2} such that the 99% of its random sources are in fact universal sequences. In other words, almost all random sources are universal. Explain how to define M_{2} and why.

[^0]: ${ }^{1}$ The class ZPP is defined in a different way in the Japanese textbook.

[^1]: ${ }^{2}$ I might have forgot to defining this class; if not, then (sorry and) take this as the definition of PSIZE.

