Lecture 6. NP-Completeness

Let us prove another key theorem in this course, that is, the NP-completeness of the SAT problem. We start by introducing the NP-completeness notion, and its basic properties.

Definition 6.1 A decision problem C is $N P$-complete if it satisfies the following properties.
(1) For any problem L in NP, we have $L \leq_{\mathrm{m}}^{\mathrm{P}} C$, and
(2) C is in NP.

Remark. A problem satisfying (1) is called NP-hard.

Theorem 6.1 Let C be any NP-complete problem. Then we have $C \in \mathrm{P} \Leftrightarrow \mathrm{P}=\mathrm{NP}$.
The theorem can be restated as follows:

$$
C \notin \mathrm{NP}-\mathrm{P} \Leftrightarrow \mathrm{P} \neq \mathrm{NP} .
$$

That is, C is the strongest candidate for a problem in $\mathrm{NP}-\mathrm{P}$.
By the transitivity of the $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducibility, we can show the NP-completeness in the following way.

Theorem 6.2 If $A \leq_{\mathrm{m}}^{\mathrm{P}} B$ and A is NP-complete, then B is also NP-complete.
We know that $3 \mathrm{SAT} \leq_{\mathrm{m}}^{\mathrm{P}}$ VC. Hence, if 3SAT is NP-complete, so is VC. Furthermore, since $\mathrm{VC} \leq_{\mathrm{m}}^{\mathrm{P}}$ ISO and CLIQUE, they are also NP-complete. And indeed we will see that 3SAT is NP-complete.

We demonstrate some simple technique for the proof of our main theorem.
Example 6.1 SAT is $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducible to 3SAT. Similarly the following CircuitSAT is $\leq_{\mathrm{m}}^{\mathrm{P}}$ reducible to 3SAT.

CircuitSAT $=\{C: C$ is a description of a Boolean circuit that has a satisfying assignment $\}$.

$\left.\begin{array}{r|c|c|c}1 & \text { NOT } & x_{1} & \\ \hline 2 & \text { NOT } & x_{2} & \\ \hline 3 & \text { AND } & 1 & x_{2} \\ \hline 4 & \text { AND } & x_{1} & 2 \\ \hline 5 & \text { OR } & 3 & 4\end{array}\right)$

Figure 6.1 An example of circuit description

Now we prove our main theorem.
Theorem 6.3 CircuitSAT is NP-complete.
Thus, SAT and hence 3SAT are NP-complete.

Homework exercise from Lecture 6

Give an outline of the proof of Theorem 6.3. In particular, explain the following. Consider any problem L in NP. Then by definition, there exist a polynomial q_{L} and a predicate R_{L} that checks whether $x \in L$ by

$$
x \in L \Leftrightarrow \exists w:|w| \leq q_{L}(|x|)\left[R_{L}(x, w)\right],
$$

where R_{L} is a polynomial-time computable predicate and M_{L} is a Turing machine computing R_{L}. Since CircuitSAT is NP-complete, there should be a $\leq_{\mathrm{m}}^{\mathrm{P}}$-reduction from L to CircuitSAT. Consider any input x for the problem L. Explain what sort of circuit for the CircuitSAT problem is defined by the reduction on this x.

* For writing an answer, you may use Japanese.

