
Complexity 2017.10.2 (revised after the class)

Lecture 3. Time/Space Hierarchy Theorems

Now we are ready to discuss Time (resp., Space) Hierarchy Theorem, one of the central

theorems of computational complexity theory. That is, the following two theorems. Below

we use the “small ω” notation, which is defined as follows: for any functions f, g : Z+ →
Z+, we say g(n) = ω(f(n)) if we have

∀c > 0, ∃nc, ∀n > nc [g(n) > cf(n)].

Theorem 3.1 (Time Hierarchy Theorem)

For any functions t1, t2: Z+ → Z+, if t2(`) = ω(t1(`) log t1(`)), then we have

TIME(t1(`)) ⊂6= TIME(t2(`)).

Remark: Precisely speaking, we require t1 to be “time constructible.” Intuitively, a time

constructible function is a natural function for a time bound. We omit explaining this

notion; see [1:Def. 9.8].

Theorem 3.2 (Space Hierarchy Theorem)

For any functions s1, s2: Z+ → Z+, if s2(`) = ω(s1(`)), then we have

SPACE(s1(`)) ⊂6= SPACE(s2(`)).

Remark: Precisely speaking, we require s1 to be “space constructible.” Intuitively, a

space constructible function is a natural function for a space bound. We omit explaining

this notion; see [1:Def. 9.1].

In the following, we prove Theorem 3.1 for specific timve bound functions for t1 and t2;

t1(`) = `2 and t2(`) = `5.

3.1 A universal Turing machine

As a key tool for proving We first introduce the notion of “universal Turing machine.”

Intuitively, a universal Turing machine is an “interpreter” of Turing machines. Thus, for

defining a universal Turing machine, we need to fix our programming language for Turing

machines. Here we consider very basic one; it is nothing but the binary encoding of a

given Turing machine.

Consider any Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject). We can simply use

nonnegative integers (encoded by the binary representation) for members of Q and Γ;

thus, we only need to specify q = |Q| and g = |Γ|. We may assume that Σ = {0, 1}, q0 is

the first state, i.e., state 0, and qaccept and qreject are the last two states respectively. Since

δ is a function from (Q−{qaccept, qreject})×Γ to (Γ−{ })×{L,R}, we can encode it by

{0, 1}∗ as illustrated in Figure 3.1. Let δ denote this binary encoding of δ. In summary,

M is encoded as 〈q, g, δ〉 in {0, 1}∗, which is referred as M in the following.

The notion of “universal Turing machine” is defined as follows.

1

Definition 3.1 A universal Turing machine is a Turing machine Meval that takes 〈M, x〉,
x ∈ {0, 1}∗ as an input and simulate the execution of M on x.

Remark: If M(x) does not terminate, then so does Meval on 〈M, x〉.

Theorem 3.1 There exists a universal Turing machine Meval such that for any Turing

machine M and for any x ∈ {0, 1}∗, it simulates M(x) with the following efficiency for a

constant cM determined by M:

timeMeval(〈M, x〉) ≤ cMtimeM(x).

A time bounded universal Turing machine

For proving Time Hierarchy Theorem, we need an Turing machine interpreter that can

stop the computation when the number of moves exceeds a given time bound.

Theorem 3.2 There exists a Turing machine Meval in time such that for any Turing machine

M, for any x ∈ {0, 1}∗, and for any t ≥ 1, (i) Meval in time(〈M, 0t, x〉) simulates M(x) up to t

moves (and rejects the input if M(x) does not terminate in t moves), and (ii) it has the

following efficiency for a constant cM determined by M:

timeMeval in time
(〈M, 0t, x〉) ≤ cMmin{ timeM(x), t } log t.

3.2 A proof by the diagonalization

Clearly, we have TIME(`2) ⊆ TIME(`5). For proving TIME(`5) − TIME(`2) 6= ∅, it is

necessary and sufficient to show that there exists a problem in TIME(`5) that is not in

TIME(`2). For defining a problem L 6∈ TIME(`2), we use the diagonalization technique.

We begin by proving the following fact by the diagonalization technique.

Fact There is a real number in [0, 1) that is not a rational number.

The key point for proving this fact is that we can “enumerate” all rational numbers

under a certain linear ordering. Note that each Turing machines is given a binary string as

its code; hence, we can enumerate Turing machines based on the order of binary strings.

Let M1, M2, . . . be Turing machines indexed under this order. For enumerating O(`2)-time

Turing machines, we use a pair (M, c) to denote a Turing machine that terminates in c`2

moves for any input of length `. More specifically, we enumerate them under the following

ordering:

(M1, 1), (M1, 2), (M2, 2), (M1, 3), (M2, 3), (M3, 3), . . .

We then define an infinite binary string for an index (Mi, cj) by the results of executing

Mi on 0` for cj`
2 moves (which is 0 if Mi does not halt within cj`

2 moves) for all ` ≥ 1.

By using this enumeration, we can define a problem L2 that is not in TIME(`2) by the

diagonalization.

Unfortunately, it is not so easy to show that L2 ∈ TIME(`5) (though this may be true).

We define a problem that is much simpler for showing also that it is O(`5)-time solvable.

2

Here we define a problem by a set of ‘yes’ instances, i.e., binary strings that should be

answered 1. The following problem L25 is our target problem:

L25 = { 〈M, c, 0n〉 | c, n ≥ 1, and Meval in time(〈M, 0c`
2

, 〈M, c, 0n〉〉) 6= 1,where ` = |〈M, c, 0n〉| }.

Then we can prove the following lemmas from which the theorem follows.

Lemma 3.3 L25 ∈ TIME(`5).

Remark: In fact, the lemma is provable by using a larger bound such as cM{min{ timeM(x), t }2

at Theorem 3.2.

Lemma 3.4 L25 6∈ TIME(`2).

3

