
Complexity 2017.10.19

Lecture 7. Randomized Algorithms

Randomized algorithms have become a standard method for desinging efficient algorithms,

and randomness is now regarded as an important resource of computation. Let us first

see some examples of randomized algorithms.

7.1 Example 1: Matrix Multiplication Check

Consider the following problem.

Matrix Multiplication Test (MULT-TEST)

Instance: Matrices A, B, and C of size n× n.

Question: A×B
?
= C.

Although there is a matrix multiplication algorithm running O(nα) steps for some

α < 3, it seems difficult to achieve the above test in O(n2) steps. On the other hand,

randomness gives us the following simple yet efficient algorithm proposed by R. Frievalds.

(R. Frievalds, Probabilistic machines can use less running time, IFIP Congress, 839–842,

1977.)

TestSoSo(A,B,C) {
choose r1,...,rn uniformly at random from {0, 1},
and let r ← (r1, ..., rn);
u ← A · (B · r); v ← C · r;
if u = v then output(yes);

else poutput(no);

For a given input A, B, and C, it is easy to see that the algorithm outputs ‘yes’ if

A × B = C. On the other hand, we can show that if A × B 6= C, then with probability

≥ 1/2, u and v differs and the algorithm outputs ‘no’.

Lemma 7.1 For anyA, B, and C, ifA×B 6= C, then the probability that TestSoSo(A,B,C)

wrongly outputs ‘yes’ is at most 1/2.

In order to improve the precision, let us now consider an algorithm Testk that exe-

cutes TestSoSo for k times. More specifically, for given A, B, and C, Testk executes

TestSoSo(A,B,C) for k times, and concludes ‘yes’ if all k answers are ‘yes’, and ‘no’

otherwise. Then we can reduce the error probability very much.

Theorem 7.2 The error probability of Testk is at most 2−k. Thus, for given ε, by using

Testk with k = dlog2 εe, we can solve MULT-TEST with error probability ≤ ε.

Proof. Again Testk makes no error for the case A×B = C. Thus, we consider any input

A, B, and C such that A×B 6= C.

Then, on this input, Testk makes error (i.e., gives ‘yes’ answer) if and only if

TestSoSo(A,B,C) gives ‘yes’ answer for k times. On the other hand, for each execution

of TestSoSo(A,B,C), TestSoSo gives ‘yes’ answer with probability at most 1/2. Since

1

TestSoSo are executed independently, Testk makes error with probability at most (1/2)k.

tu

7.2 Example 2: Smallest Enclosing Disk

Next, consider the following problem.

Smallest Enclosing Disk

Instance: A finite set D of points in R2.

Question: The smallest disk enclosing D (its center and radius).

Gärtner and Welzl formulated some combinatorial sampling lemma that can be used

for designing various algorithms in mathemtical programming, computational geometry,

etc. (B. Gärtner and E. Welzl, Linear programming – Randomization and abstract

frameworks, Lecture Notes in Computer Science 1046, 669–687, 1996. You can also

find an explanation for the smallest enclosing disk problem in E. Welzl, Smallest enclos-

ing disks (balls and ellipsoids), Lecture Notes in Computer Science 555, 359-370, 1991,

doi:10.1007/BFb0038202.)

Here we explain this by using a simple combinatorial problem — smallest enclosing

disk. We give a simple but efficient randomized algorithm.

Let S be any finite set of n elements. Below we often call each element of S point or

instance and call S space or domain. Let φ be any function defined on subsets of S. These

S and φ are fixed throughout this section.

Let T be any subset of S. For any point p in T , we say that p is extreme (or, p is an

extremer in T) if φ(T − {p}) 6= φ(T), and we say that p violates T (or, p is a violator of

T) if φ(T ∪ {p}) 6= φ(T).

Lemma 7.3 (Gärtner and Welzl)

For any r, 1 ≤ r ≤ n, define ar and br by

ar = expected number of violators of R, and

br = expected number of extremers in R,

when R is a random subsets of S consisting of r points. Then for any r, 1 ≤ r < n, we

have

ar(r + 1) = br+1(n− r).

Remark. The lemma holds even if S is a multi set. (A multi set is a set having the

same element more than once; for example, {7, 1, 2, 1, 3, 5, 7}.)

Proof. For any subset T of S and any point p, we have

p violates T ⇔ p is extreme in T ∪ {p}.

With this key fact, we have

2

(
n

r

)
ar =

∑
R⊆S:|R|=r

∑
p∈S−R

[p violates R]

=
∑

R⊆S:|R|=r

∑
p∈S−R

[p is extreme in R ∪ {p}]

=
∑

Q⊆S:|Q|=r+1

∑
p∈Q

[p is extreme in Q] = br+1

(
n

r + 1

)
. tu

This lemma may be useful for estimating certain expected values. For example, consider

the Smallest Enclosing Disk problem. Here we define, for any T ⊆ S, φ(T) to be the

smallest disk containing T . Then we can show the following fact; that is, br ≤ 3 for any

r, 1 ≤ r ≤ n. Thus, when choosing a set R of r points from S, the expected number of

violators of R is at most 3(n− r)/(r + 1).

Fact Any T ⊆ S has at most three extremers.

Remark. In most cases, those extremers of T are three points on the edge of the disk

φ(T), and the magic number three is related to the fact that any three points (not on the

same line) determine one circle that go through these three points. But be careful; this

is not the proof for the above fact!

So this lemma may be useful for estimating certain expected values, but its importance

is to derive the following sampling algorithm. (In the algorithm, we use parameters r and

c that will be fixed later.)

sampling algorithm (w.r.t. S and φ)
SS ← S; % SS is a multi set of points.

while true {
R ← random subset of SS with r points;

% I.e., select r points according to their ‘‘weights’’.

if R has no violator then halt;

if the ‘‘weight’’ of violators ≤ |SS|/3c then (∗)
SS ← SS ∪ {p ∈ SS : p is a violator of R};

}

In this algorithm, some points are put into SS several times. We intuitively consider the

number of duplications of each point as its weight. That is, the above sampling algorithm

doubles the weight of violators, and points are selected to R according to their weights.

For any subset C of S, we say that C is critical (or, a critical set of points) if for

any T ⊆ S that has a violator, some point in C is a violator of T . Note that at each

while-iteration of the algorithm the algorithm always double the weight of some point in

C.

Lemma 7.4 (Termination Lemma)

Suppose that there exists a critical set C of size c0 and that br ≤ b0 for any r, 1 ≤ r ≤ n.

If we execute Sampling Algorithm with r = 6c0b0 and c = c0, then it terminates “on

average” within 2d3c0 lnne steps. That is, the expected number t of the total while-loop

iteration is bounded by

t ≤ 2d3c0 lnne.

3

Proof. We call a while-loop iteration successful if the if the if-condition (∗) holds. First
we bound the number of successful iterations.

For any k ≥ 0, suppose that we have executed k successful iterations (and still does

not halt). Let SSk denotes SS after the kth successful iterations (SS0 = S), and let nk

is the number of points in SSk, i.e., the total weights.

Then we have

nk ≤ nk−1 + nk−1/3c0.

Hence, we have

nk = nk−1 + nk−1/3c0. ≤ nk−1

(
1 +

1

3c0

)
≤ n0

(
1 +

1

3c0

)k

< n0 · ek/3c0 ,

where n0 is |SS0| = |S| = n.

On the other hand, the weight of some point in C gets doubled at each successful

iteration. Thus, there is some point in C whose weight becomes 2k/c0 after k successful

iterations. Then nk must be larger than 2k/c0 . Thus, we have

2k/c0 ≤ nk < n · ek/3c0 .

This implies that k < 3c0 lnn. Therefore, the number of successful iterations should be

at most d3c0 lnne.
Next we estimate the total number of iterations. It follows from the Sampling Lemma,

the average weight of violators (at each iteration) is at most

b0
r + 1

(n′ − r) <
b0
r
n′ =

1

6c0
n′,

where n′ is the total weight at this point, i.e., n′ = |SS|. Thus, by using Markov’s

inequality, the probability that the weight of violators exceeds n′/3c0 is less than 1/2.

From this, it is easy to show that the expected number of iterations is at most twice as

large as the number of successful iterations. Therefore, we have t ≤ 2d3c0 lnne. tu

7.3 Example 3: Polynomial Identity Test

Next, consider the following problem.

Polynomial Identity Test

Instance: A polynomial P (x1, . . . , xn) of degree d

on some finite field F with q >> d elements.

Question: Test whether P (x1, . . . , xn) is the zero polynomial;

that is, P (x1, . . . , xn) = 0 for all points in F n.

Given two polynomials Q1 and Q2, we can test whether they are identical or not by

testing whether P := Q1 −Q2 is the zero polynomial. Thus, the above problem is called

“Polynomial Identity Test.”

Here we can define an efficient randomized algorithm based on the following lemma,

which is called Schwartz-Zippel Lemma, named after those who independently found this

lemma. (See, e.g., Wikipedia for the references.)

4

Lemma 7.5 Consider any finite subset S of F , and let s = |S|. Let us select r1, . . . , rn
uniformly at random from S. Then for any nonzero polynomial P (x1, . . . , xn) of degree

≤ d, we have

Pr
r1,...,rn

[P (r1, . . . , rn) = 0] ≤ d

s
.

Homework exercise from Lecture 7

Homework rule: Choose one of the basic problems or the advanced prolem, and hand

your answer in at the next class (for the basic problem) and at the next2 class (for the

advanced problem). (If you cannot attend the next class, you can submit your answer via

email before the class.) You do not have to write a long answer. Usually one page would

be enough. I will decide OK or NG, and you can get one point (for a basic problem) and

two points (for an advanced problem) by each OK answer.

* For writing an answer, you may use Japanese.

Basic problems

1. Prove Lemma 7.1.

2. Prove Lemma 7.5.

An Advanced problem

1. Explain the last statement (i.e., “From this, it is easy to show ...”) of the proof of

Lemma 7.4.

Appendix: Comment on a pseudo random generator

In the class, I recommended the Mersenne Twister as an easy-to-use and reliable pseudo

random generator. Please refer the follwoing web page for the information:

http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html

5

