Lecture 5. Polynomial-time Reducibility

It seems difficult to who the absolute difficulty of certain NP problems; then researchers introduced a way to investigate their relative difficulties.

Definition 5.1 For any decision problems (or, sets of strings) A and B, we say that A is many-one reducible to B (abbrev. $A \leq_{\mathrm{m}} B$) if there exists a function h with the following properties. (h itself is called a many-one reduction (abbrev. \leq_{m}-reduction).)
(a) h is a total function from $\{0,1\}^{*}$ to $\{0,1\}^{*}$,
(b) $\forall x \in\{0,1\}^{*}[x \in A \Leftrightarrow h(x) \in B]$, and
(c) h is computable.

If furthermore, h is polynomial-time computable, then we say that A is polynomial-time many-one reducible (abbrb. $A \leq \leq_{\mathrm{m}}^{\mathrm{P}} B$).

Example 5.1 Define CLIWUE, IS, VC as follows. It is easy to see that CLIQUE is $\leq_{\mathrm{m}}^{\mathrm{P}}{ }^{-}$ reducible to IS. Conversely, IS is also $\leq_{\mathrm{m}}^{\mathrm{P}}$ to CLIQUE. Also IS and VC are $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducible to each other.

$$
\begin{aligned}
\text { CLIQUE } & =\{\langle G, k\rangle: G \text { has a clique of size } k\} . \\
\text { IS } & =\{\langle G, k\rangle: G \text { has an independent set of size } k\} . \\
\mathrm{VC} & =\{\langle G, k\rangle: G \text { has a vertex cover of size } k\} .
\end{aligned}
$$

Example 5.2 3 SAT is $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducible to VC.
The following is the key property of $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducibility.

Theorem 5.1

(1) If $A \leq_{\mathrm{m}}^{\mathrm{P}} B$ and B is in P then A is also in P .
(2) The same relation holds by replacing P with its super-classes such as NP, coNP, PSPACE, EXP, ..., etc.

From this theorem, we can discuss the relative hardness of two problems by using $\leq_{\mathrm{m}}^{\mathrm{P}}$ reducibility. In fact, if $A \leq_{\mathrm{m}}^{\mathrm{P}} B$, then we have $B \in \mathrm{P} \Rightarrow A \in \mathrm{P}, B \in \mathrm{PSPACE} \Rightarrow$ $A \in$ PSPACE, etc.; hence, we may consider that B 's complexity bounds A 's complexity, or A is no harder than B. That is,

$$
A \leq_{\mathrm{m}}^{\mathrm{P}} B \quad \stackrel{\text { intuitively }}{\Longrightarrow} \quad A \text { 's hardness } \leq B \text { 's hardness }
$$

Note that $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducibility satisfies the conditions for the preorder, i.e., the reflexibility and the following transitivity.

Theorem 5.2 If $A \leq \leq_{\mathrm{m}}^{\mathrm{P}} B$ and $B \leq_{\mathrm{m}}^{\mathrm{P}} C$, then $A \leq_{\mathrm{m}}^{\mathrm{P}} C$.
There is one important remark on the $\leq_{\mathrm{m}}^{\mathrm{P}}$-reduciblity. It can be used only for comparison based on the polynomial-time computability. We cannot use it for discussing the difference
between, say, $O\left(\ell^{2}\right)$-computability and $O\left(\ell^{4}\right)$-computability. For exmple, we have the following fact.

Theorem 5.3 Let $L_{\text {trivial }}$ be a trivial problem that determines whether a given input is 1 or not. Any problem in P is \leq_{m}-reducible to such a trivial problem $L_{\text {trivial }}$.

The following examples are for preparing the next lecture.
Example 5.3 SAT is $\leq_{\mathrm{m}}^{\mathrm{P}}$-reducible to 3SAT. Similarly the following CircuitSAT is $\leq_{\mathrm{m}}^{\mathrm{P}}{ }^{-}$ reducible to 3SAT.

CircuitSAT $=\{C: C$ is a description of a Boolean circuit that has a satisfying assingment $\}$.

1	NOT	x_{1}	
2	NOT	x_{2}	
3	AND	1	x_{2}
4	AND	x_{1}	2
5	OR	3	4
			y_{1}

Figure 5.1 An example of circuit description

Homework exercise from Lecture 5

Solve the following basic problems. (This time you need to solve the all three problems to get 1 point.) Due date is Oct. 16th (Mon.), the next class.

* For writing an answer, you may use Japanese.

Basic problems

1. Prove Theorem 5.1 (1).
2. Prove Theorem 5.1 (2) for NP.
3. Prove Theorem 5.2.
