Lecture 5. Polynomial-time Reducibility

It seems difficult to who the absolute difficulty of certain NP problems; then researchers introduced a way to investigate their relative difficulties.

Definition 5.1 For any decision problems (or, sets of strings) A and B, we say that A is *many-one reducible* to B (abbrev. $A \leq_{m} B$) if there exists a function h with the following properties. (h itself is called a *many-one reduction* (abbrev. \leq_{m} -reduction).)

- (a) h is a total function from $\{0,1\}^*$ to $\{0,1\}^*$,
- (b) $\forall x \in \{0,1\}^* [x \in A \Leftrightarrow h(x) \in B]$, and
- (c) h is computable.

If furthermore, h is polynomial-time computable, then we say that A is polynomial-time many-one reducible (abbrb. $A \leq_{\mathrm{m}}^{\mathrm{P}} B$).

Example 5.1 Define CLIWUE, IS, VC as follows. It is easy to see that CLIQUE is \leq_{m}^{P} reducible to IS. Conversely, IS is also \leq_{m}^{P} to CLIQUE. Also IS and VC are \leq_{m}^{P} -reducible to each other.

CLIQUE = { $\langle G, k \rangle$: G has a clique of size k }. IS = { $\langle G, k \rangle$: G has an independent set of size k }. VC = { $\langle G, k \rangle$: G has a vertex cover of size k }.

Example 5.2 3SAT is \leq_{m}^{P} -reducible to VC.

The following is the key property of \leq_{m}^{P} -reducibility.

Theorem 5.1

- (1) If $A \leq_{\mathrm{m}}^{\mathrm{P}} B$ and B is in P then A is also in P.
- (2) The same relation holds by replacing P with its super-classes such as NP, coNP, PSPACE, EXP, ..., etc.

From this theorem, we can discuss the relative hardness of two problems by using $\leq_{\rm m}^{\rm P}$ -reducibility. In fact, if $A \leq_{\rm m}^{\rm P} B$, then we have $B \in {\rm P} \Rightarrow A \in {\rm P}$, $B \in {\rm PSPACE} \Rightarrow A \in {\rm PSPACE}$, etc.; hence, we may consider that B's complexity bounds A's complexity, or A is no harder than B. That is,

 $A \leq_{\mathrm{m}}^{\mathrm{P}} B \xrightarrow{\text{intuitively}} A$'s hardness $\leq B$'s hardness

Note that \leq_{m}^{P} -reducibility satisfies the conditions for the preorder, i.e., the reflexibility and the following transitivity.

Theorem 5.2 If $A \leq_{\mathrm{m}}^{\mathrm{P}} B$ and $B \leq_{\mathrm{m}}^{\mathrm{P}} C$, then $A \leq_{\mathrm{m}}^{\mathrm{P}} C$.

There is one important remark on the \leq_{m}^{P} -reduciblity. It can be used only for comparison based on the polynomial-time computability. We cannot use it for discussing the difference

between, say, $O(\ell^2)$ -computability and $O(\ell^4)$ -computability. For exmple, we have the following fact.

Theorem 5.3 Let L_{trivial} be a trivial problem that determines whether a given input is 1 or not. Any problem in P is \leq_{m} -reducible to such a trivial problem L_{trivial} .

The following examples are for preparing the next lecture.

Example 5.3 SAT is \leq_{m}^{P} -reducible to 3SAT. Similarly the following CircuitSAT is \leq_{m}^{P} -reducible to 3SAT.

CircuitSAT = $\{ C : C \text{ is a description of a Boolean circuit that has a satisfying assingment } \}$.

Figure 5.1 An example of circuit description

Homework exercise from Lecture 5

Solve the following basic problems. (This time you need to solve the all three problems to get 1 point.) Due date is Oct. 16th (Mon.), the next class.

* For writing an answer, you may use Japanese.

Basic problems

- 1. Prove Theorem 5.1 (1).
- 2. Prove Theorem 5.1 (2) for NP.
- 3. Prove Theorem 5.2.