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Lecture 4. Major Complexity Classes

4.1 Standard complexity classes

We first define the following standard complexity classes.

Definition 4.1 Time classes:

P =
∪

p:poly

TIME(p(`)), E =
∪
c>0

TIME(2c`), EXP =
∪

p:poly

TIME(2p(`)).

Space classes:
PSPACE =

∪
p:poly

SPACE(p(`)).

The following relations are immediate from the definition.

Fact P ⊆ E ⊆ EXP.

The class P is the class of polynomial-time solvable problems. In computational com-

plexity theory, we would use the polynomial-time solvability as a rough/weak condition

for the tractability. Thus, P can be considered as a class of tractable problems. We have

the following simpler way to express this class.

Theorem 4.1

P =
∪
k≥1

TIME(`k) = TIME(`O(1)).

The following relation can be shown by simple simulation algorithms.

Theorem 4.2 PSPACE ⊆ EXP.

On the other hand, by using the Time Hierarchy Theorem, we can show the following

separations.

Theorem 4.3 P ⊂
6= E ⊂

6= EXP.

4.2 The class NP

The complexity classes defined so far are based on the computational resource needed

to solve a given problem. On the other hand, the class NP is defined as a class of problems

that can be characterized as follows. Recall that a decision problem is specified by a set

of ‘yes’ input instances, i.e., a set of binary strings that need to get ‘yes’ answer given as

an input of the problem.

Definition 4.2 A problem L ⊆ {0, 1}∗ is in NP if there exist a polynomial qL and a

polynomial-time computable predicate RL that satisfy the following for any ` ≥ 1 and

any x ∈ {0, 1}`:
x ∈ L ⇔ ∃w [ |w| ≤ qL(`) ∧ RL(x,w) ].
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For each x ∈ L, a string w satisfying the right hand condition of the above is called a

witness (for x ∈ L, or x being a positive instance for the problem L). The function qL
and RL are respectively called a witness bound and a verifier.

Note that the condition of the above can be restated as follows:

x ∈ L ⇒ ∃w : |w| ≤ qL(`) [ RL(x,w) ],

x 6∈ L ⇒ ∀w : |w| ≤ qL(`) [ ¬RL(x,w) ].
(1)

Here are some examples of NP problems. We explain them in two categories.

Example 4.1

HAM = { G : G is a Hamiltonian graph }.
COR = { 〈G, k〉 : G is k-colorable }.
VC = { 〈G, k〉 : G has a vertex cover of size k }.
SAT = { F : F is a satisfiable (extended) Boolean formula }.
3SAT = { F : F is a satisfiable 3CNF formula }.
KNAP = { 〈 〈s1, ..., sn〉, 〈c1, ..., cn〉, B,K 〉 :

∃U ⊆ {1, ..., n} [
∑

u∈U su ≤ B ∧ ∑
u∈U cu ≥ K ] }.

SSUM = { 〈 〈a1, ..., an〉, B 〉 : ∃U ⊆ {1, ..., n} [
∑

u∈U au = B ] }.

Example 4.2

EULER = { G : G is an Eulerian graph }.
LP = { 〈A,b, c, z〉 : ∃x ≥ 0 [ Ax ≤ b ∧ cx ≥ z ] }.
PRIME = { n : n is a prime number }.
COMPO = { n : n is a composite number }.
GI = { 〈G1, G2〉 : G1 is isomorphic to G2 }.

Note that the condition of the definition of NP (more clearly, the condition (1)) is not

symmetric. Then by switching the ‘yes’ and ‘no’ conditions, we can define the symmetric

notion as follows.

Definition 4.2 A problem L ⊆ {0, 1}∗ is in coNP if there exist a polynomial qL and

a polynomial-time computable predicate RL that satisfy the following for any ` ≥ 1 and

any x ∈ {0, 1}`:
x ∈ L ⇒ ∀w : |w| ≤ qL(`) [ RL(x,w) ],

x 6∈ L ⇒ ∃w : |w| ≤ qL(`) [ ¬RL(x,w) ].

Note that it is easy to show that COMPO is in NP and also that PRIME is in coNP.

We can also prove that both are in NP and coNP. In fact, it has been shown recently

(well, 2002, already 14 years ago ;-) that PRIME is in P.

We can show the following relations between NP (and coNP) and standard complexity

classes.

Theorem 4.4

P ⊆ NP ∩ coNP ⊆ EXP.
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Homework exercise from Lecture 4

Choose one of the basic problems and hand your answer in at the next class. (If you

cannot attend the next class, you can submit your answer via email before the class.) You

do not have to write a long answer. Usually one page is enough. I will decide OK or NG,

and you can get one point by each OK answer. You can try one of the advanced problems.

But since we have one week for the next class, even if you choose an advanced problem,

due is the next class. As usual you can get two points by each OK answer to the advanced

problem. (You cannot try both basic and advanced problems for each homework.)

* For writing an answer, you may use Japanese.

Basic problems

1. Solve the following two problems.

(1) Following the definitions studied so far, prove the relation P = TIME(`O(1)) stated

in Theorem 4.1.

(2) Prove HAM is in NP. (You need to specify concretely a verifier RHAM and a witness

bound polynomial qHAM(`).)

2. For any constant k, consider any problem L in SPACE(`k). Explain an algorithm for

simulating L and that it runs in TIME(2c`
k
) time for some c.

3. Prove that P ⊂
6= E stated in Theorem 4.3. (Hint: By the Hierarchy Theorem, we can

show that, e.g., TIME(`k) ⊂6= TIME(2`). But this is not enough to show the desired

separation.)

An advanced problem

1. The witness size bound of all NP problems we showed in the class is linear (i.e., O(`))

with respect to the input length `. Show an example that seems to need a nonlinear

witness size bound. (Remark. Note that a natural witness for G ∈ HAM for any

graph with n vertices is O(n log n), but this length is O(`) in terms of the length of

the binary description of G.)

2. All NP problems we showed in the class are all solvable in E. Show an example

problem that seems to need, say, O(2`
2
)-time to solve.

3. Prove that PRIME is in NP. (Please do not try to explain PRIME is in P; just

showing in NP is enough.)
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