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Hook’s law for a spring? 

F = kx

T h i s c l a s s i n t r o d u c e s y o u 
generalized Hook’s law for a crystal 
(anisotropic materials) 

	Force                spring constant    displacement	
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Mechanical response of 
materials	
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Elasticity 

F = kx

Viscosity 　　　　　　　　　　 Plasticity 

 F =η !x F − Fy = f (x)

Visco-Elasticity 

Visco-Plasticity 

Elasto-plasticity 

Deformation of linear elastic 
isotropic uniform body	
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Axial loading 
      : tensile and compression 

σ = Eε (1)
	normal stress      Young’s modulus      normal strain	

Shear loading 
τ = Gγ (2)

	shear stress      modulus of rigidity      shear strain 
                                                                (engineering strain)	

Do you know other two elastic constants? 	
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Poisson’s ratio ν 

 
ν = − ε t

εℓ
	transverse strain 
 
 longitudinal strain	

Bulk modulus　B 

p = B ΔV
V

	isostatic pressure	

Among these 4 elastic constants, there 
are two independent　variables. Do you 
know the reason?	

	volume change 
 
 initial volume	
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Young’s modulus of engineering 
materials 

materials E�GPa 
Mild steel 210     

Al 70 
diamond ~1000 

SiC 420 
Al2O3 390 
Si3N4 300 
ZrO2 200 
glass 70 

plolymer 1-3 
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Constitutive equation	
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Tensor representation 
   for anisotropic linear elastic body 

This is the generalized Hook’s law, 
containing 9 linear simultaneous 
equations (3 * 3 for i and j) 
 
We can solve this simultaneous 
equations for     ,  and then…… 

	stress       stiffness     strain	

		σ ij =Cijklεkl (3)

	εkl

Constitutive equation	
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Tensor representation 

N o t e t h a t t h e s y m b o l d o n o t 
correspond to the name. 
 
We can express these tensor equation 
in several ways.  
 

	strain    compliance     stress	

		ε ij = Sijklσ kl (4)
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Constitutive equation	
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Tensor representation by matrix (not 
familiar) 

		 

σ 11

σ 22

σ 33

σ 23

σ 32

σ 31

σ 13

σ 12

σ 21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
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⎟
⎟
⎟

=

C1111 C1122 C1133 C1123 C1132 C1131 C1113 C1112 C1121
C2211 C2222 C2233 C2223 C2232 C2231 C2213 C2212 C2221

!
C2311 C2322 C2333 C2323 C2332 C2331 C2313 C2312 C2321

!
!
!
!

C2111 C2122 C2133 C2123 C2132 C2131 C2113 C2112 C2121

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
⎟

ε11
ε22
ε33
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ε32
ε31
ε13
ε12
ε21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟

(5)

9 * 9 = 81 Cijkl components nominally 

Constitutive equation	
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But there are the relations (symmetry) 
between Cijkl, as below 

So, we have 21 independent 
components in Cijkl 

Cijkl=Cjikl=Cijlk=Cklij 	

Cijkl is the forth rank tensor. Do you 
know the reason? 
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Constitutive equation	
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Assume a new Cartesian coordinate 
system is set by rotation of the old one 
around the origin 

	
σ ij 	

ε ijold	

new		 ′σmn 	 ′εts 		

σ ij =Cijklεkl (6)
εkl =νktν ls ′εts (7)
′σmn =νmiνnjσ ij (8)

		

′σmn =νmiνnjCijklνtkν sl ′εts

∴ ′Cmnts =νmiνnjνtkν slCijkl (9)

	νkt Direction cosines of axis from 
old to new system	

Constitutive equation	
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Matrix representation (engineering 
strain form) 

S t r e s s a n d s t r a i n t e n s o r a r e 
symmetrical tensors, and therefore, 
they have 6 independent components. 
 
 

		

σ ij =σ ij =

σ 11 σ 12 σ 13

σ 21 σ 22 σ 23

σ 31 σ 32 σ 33

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

		

εkl = εkl =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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Constitutive equation	
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Matrix representation (engineering 
strain form) 

Stress and strain tensor are expressed 
by 6-dimensional vector as below, 
 
 

	

σ 11→σ 1

σ 22→σ 2

σ 33→σ 3

σ 23 =σ 32→σ 4

σ 31 =σ 13→σ 5

σ 12 =σ 21→σ 6 	

ε11→ε1
ε22→ε2
ε33→ε3

ε23 = ε32→
1
2ε4 (ε4 =2ε23)

ε31 = ε13→
1
2ε5 (ε5 =2ε31)

ε12 = ε21→
1
2ε6 (ε6 =2ε12)

Constitutive equation	
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Matrix representation (engineering 
strain form) 

In tensor representation,       and  
are added separately, but matrix 
representation,    is added once, so, 
the value of      should be double of  
, and       is the same as engineering 
shear strain  

	ε23 	ε32
	ε4

	ε4 	ε23

	
ε23 = ε32→

1
2ε4 (ε4 =2ε23 = γ 23)

	ε4
	γ 23
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Constitutive equation	
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Matrix representation (engineering 
strain form) 

		σm =Cmnεn (10)

		

σ 1

σ 2

σ 3

σ 4

σ 5

σ 6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

ε1
ε2
ε3
ε4
ε5
ε6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(11)

6 * 6 = 36 Cmn components nominally 

Constitutive equation	
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But there are the relations (symmetry) 
between Cmn, also 

So, we can undersntand why  
21 independent components 
in Cijkl      (21=6+5+4+3+2+1) 

Cmn=Cnm	

This comes from elastic strain 
energy can be expressed by positive 
quadratic function of strain 

		
W = 12Cijklε ijεkl
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Constitutive equation	
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So, matrix representation is 

		

σ 1

σ 2

σ 3

σ 4

σ 5

σ 6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

C11 C12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C33 C34 C35 C36
C44 C45 C46

Sym. C55 C56
C66

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

ε1
ε2
ε3
ε4
ε5
ε6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠
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⎟
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⎟
⎟
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(12)

Constitutive equation	
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In the same way, compliance tensor 
can be  

		εm = Smnσ n (13)
Note that the next transformation is 
needed to obtain Smn  

		

Sijkl = Smn (Both_m_and _n_ =1,2,3)

Sijkl =
1
2Smn (Either _m_or _n_ = 4,5,6)

Sijkl =
1
4 Smn (Both_m_and _n_ = 4,5,6)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(14)
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Constitutive equation	
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You can understand this when you 
write it down from tensor to matrix 
representation, 

		

ε11 = S1111σ 11 + S1112σ 12 + S1113σ 13

+S1121σ 21 + S1122σ 22 + S1123σ 23

+S1131σ 31 + S1132σ 32 + S1133σ 33

→

ε1 = S11σ 1 +
1
2S16σ 6 +

1
2S15σ 5

+12S16σ 6 + S12σ 2 +
1
2S14σ 4

+12S15σ 5 +
1
2S14σ 4 + S13σ 3

(15)

We can see the same S16 
term, so originally, S16 should 
be half 

		

ε23 = S2311σ 11 + S2312σ 12 + S2313σ 13

+S2321σ 21 + S2322σ 22 + S2323σ 23

+S2331σ 31 + S2332σ 32 + S2333σ 33

→

1
2ε4 =

1
2S41σ 1 +

1
4 S46σ 6 +

1
4 S45σ 5

+14 S46σ 6 +
1
2S42σ 2 +

1
4 S44σ 4

+14 S45σ 5 +
1
4 S44σ 4 +

1
2S43σ 3

(16)

Constitutive equation	
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You can understand this when you 
write it down from tensor to matrix 
representation, 

And we can see the same S46 
term, so originally, S46 should 
be 1/4 

I n t h e m at r i x 
representation, 
s t r a i n  ε 2 3 i s 
related to half of 
ε4 initially. 
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Origin of elasticity	
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Elasticity means that shape and 
dimension of a body return back to the 
original state after unloading. 

Energy elasticity 
  metal and ceramics  
  stiffness decreases when it is heated. 
 
Entropy elasticity 
  polymer 
  stiffness increases when it is heated. 
 

Origin of elasticity	

22	

Thermodynamics 1st law 

From the 2nd law, in the reversible 
process, entropy change per unit 
volume can be expressed by  
 
 
 
By combining these two equations, we 
obtain for the isothermal reversible 
process, 

		dU =δQ+σdε (26)

		
dS = δQ

T
(27)
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Origin of elasticity	
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The first term  is the stress by increase 
of internal energy U with increasing 
the strain, and the second term is the 
stress by decrease in entropy S .   

		
σ = ∂U

∂ε
⎛
⎝⎜

⎞
⎠⎟ T

−T ∂ S
∂ε

⎛
⎝⎜

⎞
⎠⎟ T

(28)

Origin of elasticity	
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On the other　hand,　Helmholz energy  F 
per unit volume  is, 
 
 
 
The infinitesimal change of F is  

		F =U −TS (29)

		

dF = dU −TdS − SdT
=δQ+σdε −TdS − SdT (30)
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Origin of elasticity	
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Considering isothermal condition dT=0, 
Eq.(30) gives, 
 
 
 
And if we consider temperature 
changes in quasi-static by keeping 
strain constant, 

		
∂F
∂ε

⎛
⎝⎜

⎞
⎠⎟ T

=σ (31)

		
∂F
∂T

⎛
⎝⎜

⎞
⎠⎟ ε

= −S (32)

Origin of elasticity	
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From Eq.(31) and (32) we have, 
 
 
 
 
 
Substitute this relation into Eq.(28), so, 
 

		
∂σ
∂T

⎛
⎝⎜

⎞
⎠⎟ ε

= ∂
∂T

∂F
∂ε

⎛
⎝⎜

⎞
⎠⎟
= ∂ 2F
∂T∂ε

= ∂
∂ε

∂F
∂T

⎛
⎝⎜

⎞
⎠⎟
= − ∂ S

∂ε
⎛
⎝⎜

⎞
⎠⎟ T

(33)

		
σ = ∂U

∂ε
⎛
⎝⎜

⎞
⎠⎟ T

+T ∂σ
∂T

⎛
⎝⎜

⎞
⎠⎟ ε

(34)
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Origin of elasticity	
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Experimental results showed that 8% 
vulcanized gum(sulfur added) had a 
relation　σ ＝ cT  when it was heated. 
 
Look back Eq.(28),  Eq.(28)  should be,  
 
 
 
And corresponding to σ ＝ cT results, 
the 2nd term             in Eq.(35) should be 
negative. 

		
σ =0−T ∂ S

∂ε
⎛
⎝⎜

⎞
⎠⎟ T

(35)

		 ∂ S /∂ε( )
T

Origin of elasticity	
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If is is so, from Eq.(33)                  , we 
obtain, 
 
 
This means that the stress should be 
increased when temperature raises 
under the condition of constant strain. 
 
    Young’s modulus increases when 
temperature raises.   (Entropy  
elasticity)  

		
∂σ
∂T

⎛
⎝⎜

⎞
⎠⎟ ε

>0 (36)
		
∂σ
∂T

⎛
⎝⎜

⎞
⎠⎟ ε

= ∂
∂T

∂F
∂ε

⎛
⎝⎜

⎞
⎠⎟
= ∂ 2F
∂T∂ε

= ∂
∂ε

∂F
∂T

⎛
⎝⎜

⎞
⎠⎟
= − ∂ S

∂ε
⎛
⎝⎜

⎞
⎠⎟ T

(33)
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Origin of elasticity	
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For energy elasticity, from Eq.(28), we 
can see, 
 
 
 
The work done by external load is 
stored as the increase in internal 
energy by the change in distance and 
angle between atoms.   
 
Young’s modulus decreases when 
temperature raises. 
 
 
 

		
σ = ∂U

∂ε
⎛
⎝⎜

⎞
⎠⎟ T

−0 (37)

 
 Entropic Elasticity of an Oxide Glass 

Seiji INABA (Asahi Glass), Hideo HOSONO (Tokyo Tech.), Setsuro ITO 
(Asahi Glass)	

Recently we revealed that mixed alkali metaphosphate glass 
with the composition of Li0.25Na0.25K0.25Cs0.25PO3 mol% showed 
large anisotropy and highly orientated P-O-P chain structure 
when the glass was deformed under uniaxial stress above glass 
transition temperature and the deformed structure was frozen by 
cooling under stress. In the present study we found the 
anisotropic glass showed a huge thermal shrinkage of 35% in 
length of glass when heated at deformation point (η=10 9.7 
Pa.s). We will discuss the shrinkage mechanism in terms of 
viscoelastic properties.	
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