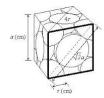
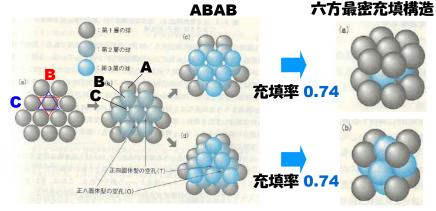
2次元の最密充填構造



円の半径 r → 三角形の一辺 2r \rightarrow 三角形の面積 (1/2) x 2r x $\sqrt{3}$ $r = \sqrt{3}$ r^2

円の面積 $\pi r^2 \times (1/6) \times 3 = \pi r^2/2$ 充填率 $(\pi r^2/2)/(\sqrt{3}r^2) = \pi/(2\sqrt{3}) = 0.906$



円の半径 r → 正方形の一辺 2r → 正方形の面積 4 /² 円の面積 π/2 充填率 $(\pi r^2)/(4r^2) = \pi/4 = 0.785$

面心立法格子の充填率

$$4r = \sqrt{2}a$$
 球の体積 $\frac{4 \times \frac{4}{3} \pi r^3}{(\sqrt{8}r)^3} = \frac{2\pi}{3\sqrt{8}} = 0.74$

ABCABC

=面心立方構造

Cubic close packing (ccp)

Hexagonal close packing (hcp)

Hexagonal close packing (hcp) 六方最密充填構造

充填率 0.74

配位数 12

配位数 6 充填率 0.52 Cubic close packing (ccp)

立方最密充填構造 =面心立方構造

Face-centered cubic (fcc)

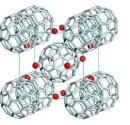
配位数 12 充填率 0.74

体心立方構造 **Body-centered cubic (bcc)**

配位数8 充填率 0.68

単体金属の構造 (室温)

н																	He
Li	Ве											В	С	N	0	F	Ne
Na	Mg											AI	Si	P	s	CI	Ar
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Χe
Cs	Ва	Ln	Hf	Та	w	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rr


bcc hcp

 C_{60}

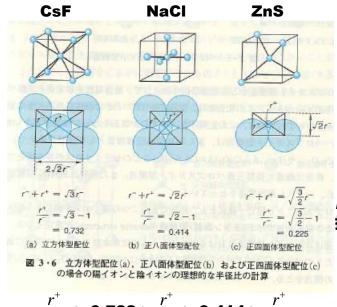
面心立方

 $C_{60} + K \rightarrow K_3 C_{60}$ 超伝導 (18 K)

ССР

配位数 4

各イオンはccp

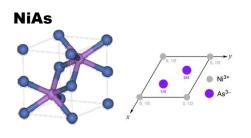

LiF, KCI, AgCI, AgBr CaO, MgO MnS, PbS

CsCl, CsBr CsI, CuZn

↑ 各イオンは単純立方 Cs=Clでbcc

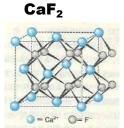
Zn=Sでdiamond構造

CuCl, γ-Agl BeS, ZnSe CdTe, BP GaAs, AlSb



rどうしが 接する条件

 $\frac{r^+}{r^-}$ > 0.732 > $\frac{r^+}{r^-}$ > 0.414 > $\frac{r^+}{r^-}$



Wurtzite - Zn²⁺ 〇 = S²⁻ (c) ウルツ鉱型構造

CdS, BeO ZnO, β-AgI

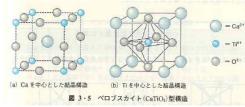
1:2

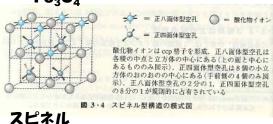
配位数 8:4

配位数 6:3

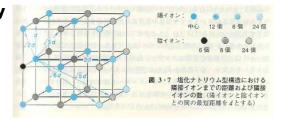
クリストバル石型 配位数 4:2

Na₂O, K₂O


その他の組成

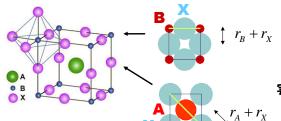

コランダム

BaTiO₃



ペロプスカイト

Madelung Energy NaCl



第1近接 d 6個 第2近接 √2d 12個

$$V = \frac{1}{4\pi\varepsilon_0} \left(-\frac{6e^2}{d} + \frac{12e^2}{\sqrt{2}d} - \frac{8e^2}{\sqrt{3}d} + \frac{6e^2}{2d} - \frac{24e^2}{\sqrt{5}d} + \frac{24e^2}{\sqrt{6}d} \cdots \right)$$
 Madelung **E**\$\frac{\omega}{4\pi\varepsilon_0} \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \frac{24}{\sqrt{5}} - \frac{24}{\sqrt{6}} \cdots \right) = 1.74756

NaCl	1.74756	Cdl ₂	2.36
CsF	1.76267	CaF ₂	2.51939
ZnS	1.63806	TiO ₂	2.408
Wurtzite	1.64132	$\overline{Al_2O_3}$	4.040

ペロブスカイト ABX3

Aが空隙に入るためには

$$t = \frac{r_A + r_X}{\sqrt{2}(r_B + r_X)} < 1$$

tolerance factor 実際に存在するペロフスカイト: 0.8 < *t* < 1.0

,有機太陽電池の色素

BaTiO₃ Ba²⁺ r_A = 149 pm Ti⁴⁺ r_B = 75 pm O²⁻ r_X = 126 pm t = 0.97

 $CH_3NH_3PbI_3$ $CH_3NH_3^+$ $r_A = 217 \text{ pm } (円筒の半径)$ Pb^{2+} $r_B = 133 \text{ pm}$ $I^ r_X = 206 \text{ pm}$ t = 0.88