1 Exercise - Eigenvalue problem

e Compute (a) the characteristic polynomial of A, (b) the eigenvalues of A, (c) a basis for
each eigenspace of A, (d) the algebraic and geometric multiplicity of each eigenvalue.
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Theorem 4.15,

Theorem 4.16,

Theorem 4.17,

Theorem 4.18,

Example 4.21,

Theorem 4.19 and Warning,

Theorem 4.20 (without proof).
. o . 1 1 .
e Let A is a 2 X 2 matrix with eigenvectors vi = q and vo = 1 corresponding to

eigenvalues \; = % and Ao = 2, respectively, and x = [ i) }

(a) Find A0x.
(b) Find A*x. What happens as k becomes large (i.e., k — co+)?

e (a) Show that, for any square matrix A, AT and A have the same characteristic polyno-
mial and hence the same eigenvalues.

(b) Give an example of a 2 x 2 matrix A for which A” and A have different eigenspaces.

e If v is an eigenvector of A with corresponding eigenvalue A and c is a scalar, show that v

is an eigenvector of A — cI with corresponding eigenvalue A — c.



1.1 Solution of exercises

e Compute (a) the characteristic polynomial of A, (b) the eigenvalues of A, (c¢) a basis for
each eigenspace of A, (d) the algebraic and geometric multiplicity of each eigenvalue and
(e) decide whether A is diagonalizable or not and state why.
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Solution. Follows the same steps as Example 4.19. O
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e Let A is a 2 x 2 matrix with eigenvectors vi = [ 1 } and vy = [ 1 } corresponding to

eigenvaluses A\; = % and A = 2, respectively, and x = [ i) ]
(a) Find A'0x.
(b) Find A*x. What happens as k becomes large (i.e., k — oo+)?

Solution. Follows the same steps as Example 4.21. Notice that we don’t need to know the
matrix A at all. O

e (a) Show that, for any square matrix A, AT and A have the same characteristic polyno-
mial and hence the same eigenvalues.

(b) Give an example of a 2 x 2 matrix A for which AT and A have different eigenspaces.

Solution. As for (a). Since det X = det X7 for any square matrix X, we have

det(A — \I) = det((A — A)T) = det(AT — MT) = det(AT — \I).

As for (b). Consider the matrix A = [ (1) i } From (a), we see that A has the same
eigenvalues as AT, namely A\; = Xy = 1, but by a simple calculation we see that the

corresponding eigenspaces are different for A and AT O

e If v is an eigenvector of A with corresponding eigenvalue A\ and c is a scalar, show that v
is an eigenvector of A — ¢l with corresponding eigenvalue A — c.

Solution. If Av = Av then obviously (A —cI)v = (A —¢)v. O



1.2 Extra exercises with solutions

1. read Example 4.4,
2. A proof of Theorem 4.18 (b) and (c).

Proof. Let x be an eigenvector of A corresponding to the eigenvalue .

(b) By definition X is an eigenvalue of A if Ax = Ax for some x # 0. Since A is invertible
we have A # 0 and multiplying the equation by A~! we get

x = A" )\x.
AT =21k,

(¢) For positive integer n, by the part (a), A" is an eigenvalue of A™. Since A is invertible,
by the part (b), we have A~! is an eigenvalue of A~!. Using these two information we
have

A"x = (A" = (AH)"x = A "x,

for all positive integers n. In the case n = 0 we use the convention A% = I and \° =1
and hence A% = Ix = x = 1x is also satisfied. This completes the proof for all integers

n.
O

3. A proof of Theorem 4.19.
Proof. Let x =c1vi+ -+ ¢V, Since vy,..., vy, are eigenvectors corresponding to eigen-

values A1, ..., Ay, using Theorem 4.18 (a) we calculate
Abx = Ak(clvl + e Vm) = cl(Akvl) + .4 cm(Akvm) = cl/\]fvl + 4 cm)\ﬁlvm.

This concludes the proof for any k positive integer. If A~! existed, we could generalize this
results for all integers k. O



