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Homework (solution)

(a) Exercise 1.1 on page 16.

31.
32.
33.
34.
35.
36.
44.
45.
49.
56.

o7.

24+2+2=0in Zs.
2-2-2=2in Zs.
22+1+42)=11in Zs.
33+3+4+2)=0in Zy.
2:3-2=0in Z4.

3+14+24+3=1inZ4.

r=4in Zs.
T =2 in Zg.
There is no solution of 2z =1 in Z4. (Try any value from 0 to 3)

(a) For all, just test all values.
(b) For all, just test all values.

(¢) From previous results we suspect that the answer should be for all. Lets try to prove
it. If for each a and m there exists y € Z,, such that a +y = 0 then x + a = b has the
solution © = b+ y for all a,b and m. So let us show that this is true. For a = 0 it is
obviously true, we can take y = 0. Now let a > 0 then m —a < m — 1 and obviously
m —a > 1 and hence y = m — a € Z,,. Proved.

When a = 0 there is never a solution and when a = 1 there is always the solution x = 1
irrespective of m.

(a) There is a solution for a = 1,2, 3, 4.
(b) There is a solution only for a = 1, 5.

(c¢) There is a solution if and only if GCD(a, m) = 1, in other words if the greatest common
divisor of a and m is equal to 1. Here is a proof.

We have to show two implications. First is from left to right, if there is a solution then
GCD(a,m) = 1. To do so we prove an equivalent implication, namely, if GCD(a, m) =
p > 1 then there is no solution.

If p divides both a and m, then p also divides ax but then it does not divide ax — 1 ,
hence ax — 1 can never be 0 modulo m.

Second we prove the implication from right to left, i.e., if GC'D(a, m) = 1 then there is
a solution. We do that by finding a particular solution.

Let GCD(a,m) = 1 and consider a,a?, a®,... These fall in finitely many remainder
classes, thus there exist k < I so that a* = a! mod m. That is, A = a*(all — k) — 1)
is divisible by m. If p is a prime factor of m so that p® divides m but ps + 1) does
not, then p* divides A but because a is not divisible by p, this implies that p® divides
all — k) — 1. Since this holds for all p, we have that m divides a{l — k) — 1. That means
that 2 = a{l — k — 1) is a solution to az = 1 mod m.



(b) Exercise 2.1 on page 69:

8. The given system is equivalent to x +y =1, (x — y # 0).
9. The given system is equivalent to x + y = 4, (zy # 0).

15. From the figure, there is a unique answer r = 3.y = —3.

A

25. x=2,y=—-"7,2=—32.

39. (a) Computing the augmented matrix in the inverse direction, we have [ (1) (1) ’ 3 _t of ] —

2 1 3 . .
[ 01 ‘ 3_ o } . Thus the desired equation is 2x 4+ y = 3.

3—s

(b) Substituting y = s into 2z + y = 3, we obtain = =

3—s
2

RS Y = S.

42. For z,y € R let v = 2% and v = y2. The the given system of equations is changed to the
{ u+20="56
System

u—v=3
u =4,v = 1. This is equivalent to 2% = 4,y% = 1.

So(zy) =(2,1),(2,-1),(=2,1), (=2, —1).

for all u,v > 0. This system of linear equations has the solution

43. For all x € (=5 + km,5 +kn), k € Z, y,z € Rlet u = tanxz, v = siny, w = cos 2.

u—2v =2
Then the given system of equations is changed to the system ¢ v — v+ w =2 for all
v—w=—1
u € R, v,w € [—1,1]. This system of linear equations has the solution u =1, v = —%,
w=1.
.‘.x:%—f-lm, y:%—f-Zkﬂ', Z:§+2kﬂ', k € Z.
44. For all a,b € R let a = logyx and b = logzy. The the given system of equations is
— 2y =1
changed to the system { 3xx_+ 4yy_ 1 for &,y > 0. This system of linear equations
has the solution z = —%, Yy = % and hence there is no solution for the original system

since x = —% < 0.



(c) Exercise 2.2 on page 85:

o N3Ok W

13.

17

no.
yes, yes.
yes, yes.
yes, no.
no.
yes, no.
no.
no.
2 4 2 6| R—iR[2 —4 2 6
(&) [3 626 [0 0 -1 —3}'
2 —4 2 6| Re-3R[2 —4 2 6] iRitR(-DR:[1 -2 0 0
<b)[3—626_§[00—1—3] - 0 0 1 3]
3 2 N omigReam |0 2 L 3 -2 1
(a) |2 —1 —af PR o g R g 1
4 -3 -1 0 -1 1 0 0 0
3 -2 -1 . 3 -2 -1 30 -3],, 10 -1
(b) |2 -1 —1| 28 g 1 1| BB®R g 1 1 B o1 -1
4 -3 -1 0 0 00 0 00 0
. 1 2 10 3 -1 10 . .
. Since A = [3 4} — [O 1} and B = [1 0} — [O 1}, the given matrices are row

equivalent. The sequence (for example) is Ry — 3Ry, Ry + Ra, —%Rg, —Ry, R3 + 3R,

and R; < Rs.

20.

21

23.

T1
T2

|

R2i>R1 |:

1
ro 411

Ri—

ro+ 11

1

|

Rzi>R1 [

#

Hence the net effect is just interchanging the two rows.

. It can be achieved only by a sequential application of elementary row operations not
by a single operation! Using elementary row operations we have

W W W N NN o W

31
2 4

|

]

3 1
6 12

3 1
0 10

Ry—2R;

|00 ]



24.

31.

32.

33.

35.
36.

37.

38.

41.

1 o] [Tt 0o %] [1 % 0] [0 1 O]
01 0[,]0 1 %{,|0 O 1],(0 O 1],
0 1] [0 0 0f] [0 0 0] [0 0 O]
[1 % x| [0 1 %] [0 0 17 [0 0O O]
0 0 0[,{0 0 O0l],|0 0 0/,]0 O O
0 0 0f] [0 0 0] [00 0] [0 0 O]
$ 1 -1 -6 0f2 1 0 -6 0 —12| 24
%%0—3 1|-1 | =01 2 -6 6|-10
5 0 =2 0 —4| 8 0 0 0 0 0} O
6 [0 12 24
2 6 —6 10
The solution set is ¢ s [ 1 | +¢ |0 +u | 0O | + |0 | |s,t,ueR
0 1 0 0
0 0 1 0
V2 1 2] 1 V2 0 0| 2
0 vV2 —3|-vV2 |~ 01 0[-1
0 -1 V2| 1 00 1]0
1 V2]
The unique solution is |z2 | = [ —1
I3 1_
1 1 2 1|1 1 00 1|0
1 -1 -1 1] 0 . 01 0 010
0 1 1 0|-1 0 01 010
1 1 0 1] 2 0 00 O0f1

The equation has no solution.
Unique solution - It is in row echelon form with all leading 1’s.

No solution - coefficients of 3rd row are multiple of 2nd row, but constant terms are
not.

Infinitely many solutions - homogeneous system - thus it is consistent and there is more
variables than equations.

Infinitely many solutions - 3rd row is a linear combination of 1st and 2 row so we can
forget about it. Since it is less equations than variables the system has either infinitely
many solutions or no solution. (Do you understand why?) If a system has no solution
then its row echelon form contains a row consisting only of zeros at the ”coefficient
part” and a nonzero constant term on the right hand side. (Do you understand why?)
We can easily see that our matrix does not have such a row echelon form. (Do you
understand why?) Hence the system has infinitely many solutions.
1 k|1 1 k 1

[k: 1‘1]%[0 11—k | 1—k
Thus it has infinitely many solutions.

0

] . If k=1, the augmented matrix is [ é 1 ‘ L } .



42.

If £ = —1, the augmented matrix is [ (1) _01 ‘ ; ] . Thus it has no solution.
k
1 0| —
If k # £1, the augmented matrix is k T L | . Thus it has a unique solution.
0 1| ——
k+1
11 1] 2 11 1 2
1 4 -1 k| —-|0 3 =2 k—2
2 —1 4K 00 O0f|(k+3)(k—2)

If k £ —3,2, there is no solution.

10 2|4

If K = —3 the augmented matrix is | 0 1 —% —32 . Thus it has infinitely many
00 0 0

solutions.

If £ = 2, the augmented matrix is . Thus it has infinitely many

S O =
o = O
|
O wihwlwt
S O N

solutions.

44. The system x+y = 1, 2z + 2y = 2 satisfies m = n = 2 and has infinitely many solutions.

54.

55.

56.

60.

The system « +y = 1, 2z + 2y = 2, 3z + 3y = 3 satisfies m = 3 > 2 = n and has
infinitely many solutions.

Similarly, x +y = 1, © — y = 0 satisfies m = n = 2 and has a unique solution and
r4+y=1x—y =0, 2x — 2y = 0 satisfies m = 3 > 2 = n has a unique solution.

3 21 1 4|1 . .
1411 } — [ 0 0 ‘ 3 ] . There is no solution.
(1 1 0|17 [1 0 2|1
01 1{0|—=([011{0].Thusxz=1,y=0,z=0.
| 1 0 1|1 | 0 0 2|0 |
(1 1 0|17 (1 0 1)1
01 1{0]—=|0 1 1]0 |.Thus the solution set is
| 1 0 1|1 | 0 0 0|0 |

1 1

s|1| + 0| |seR

1 0

[Z g ;l} in Zg. Using Gaussian elimination we get by Ry + R; that [(2) g‘g]

and hence the solutions [z, y] are

(2,0],15,0],[2,2], [5,2],[2,4], [5,4].

We have one free variable and hence we expect 6 solutions, one for each choice of
y € {0,...,5}. We got 6 solutions however for y = 0,2,4 we got TWO different
solutions and for y = 1,3,5 we have no solution. That is not a behavior we expect
from a linear equation. Hence working with Z, where p is prime is necessary.



