,			
05/09	Class 9	Dense direct solvers	Understand the principle of LU decomposition
			and the optimization and parallelization techniques
			that lead to the LINPACK benchmark.
		Dense eigensolvers	Determine eigenvalues and eigenvectors
05/12	Class 10		and understand the fast algorithms for
			diagonalization and orthonormalization.
05/16	Class 11	Sparse direct solvers	Understand reordering in AMD and nested
			dissection, and fast algorithms such as
			skyline and multifrontal methods.
	Class 10	Sparse iterative solvers	Understand the notion of positive definiteness,
05/19	Class 12		condition number, and the difference between
			Jacobi, CG, and GMRES.
		Preconditioners	Understand how preconditioning affects the
05/23	Class 13		condition number and spectral radius, and
			how that affects the CG method.
05/26	Class 14	Multigrid methods	Understand the role of smoothers, restriction,
			and prolongation in the V-cycle.
05/30	Class 15	Fast multipole methods, H-matrices	Understand the concept of multipole
			expansion and low-rank approximation,
			and the role of the tree structure.
,			

Iterative Methods

Initial error.

 Error after several iteration sweeps:

Many relaxation schemes have the smoothing property, where oscillatory modes of the error are eliminated effectively, but smooth modes are damped very slowly.

Multigrid Methods

A smooth function:

 Can be represented by linear interpolation from a coarser grid:

On the coarse grid, the smooth error appears to be relatively higher in frequency: in the example it is the 4-mode, out of a possible 16, on the fine grid, 1/4 the way up the spectrum. On the coarse grid, it is the 4-mode out of a possible 8, hence it is 1/2 the way up the spectrum.

Relaxation will be more effective on this mode if done on the coarser grid!!

Multigrid Method

Multigrid Methods

I-D Laplace Problem

1D Laplace on a uniform grid with spacing h

■ Discrete problem is a linear system Au = f with

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \\ & -1 & 2 \end{pmatrix} \qquad \text{or} \qquad A = \begin{bmatrix} -1 & 2 & -1 \\ \end{bmatrix}$$
 Stencil Matrix

I-D Laplace Problem

1D Laplace on a uniform grid with spacing h

■ Discrete problem is a linear system Au = f with

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \\ & -1 & 2 \end{pmatrix} \qquad \text{or} \qquad A = \begin{bmatrix} -1 & 2 & -1 \\ \end{bmatrix}$$
 Stencil Matrix

Restriction

Interpolation (Prolongation)

Interpolation (Prolongation)

If u is smooth, a coarse-grid interpolant of v^{2h} may do very well.

If u is oscillatory, a coarse-grid interpolant of v^{2h} may <u>not</u> work well.

Smoothers

A classical linear iteration for a matrix A of the form

$$x^{(i+1)} = x^{(i)} + R(b - Ax^{(i)})$$

with some matrix R, is a *smoothing iteration* if

(I - RA)e is smoother than e for any e.

$$x^{(i+1)} = x^{(i)} + R(b - Ax^{(i)})$$
 $x = x + R(b - Ax)$
 $e^{(i+1)} = e^{(i)} - RAe^{(i)}$

(Hence smoothing iterations smooth errors.)

Smoothers

A classical linear iteration for a matrix A of the form

$$x^{(i+1)} = x^{(i)} + R(b - Ax^{(i)})$$

with some matrix R, is a smoothing iteration if

(I - RA)e is smoother than e for any e.

If D is the diagonal and L is the lower triangular part of A, then

Jacobi iteration: $R = D^{-1}$

Gauß-Seidel iteration: $R = (L + D)^{-1}$

Multilevel V-cycle

 Major question: How do we "solve" the coarse-grid residual equation? Answer: recursion!

$$\begin{array}{c}
u^{h} \leftarrow G^{V}(A^{h}, f^{h}) & u^{h} \leftarrow u^{h} + e^{h} \bigcirc \\
f^{2h} \leftarrow I_{h}^{h}(f^{h} - A^{h}u^{h}) & e^{h} \leftarrow I_{2h}^{h}u^{2h} \\
u^{2h} \leftarrow G^{V}(A^{2h}, f^{2h}) & u^{2h} \leftarrow u^{2h} + e^{2h} \bigcirc \\
f^{4h} \leftarrow I_{2h}^{4h}(f^{2h} - A^{2h}u^{2h}) & e^{2h} \leftarrow I_{4h}^{2h}u^{4h} \\
u^{4h} \leftarrow G^{V}(A^{4h}, f^{4h}) \bigcirc & u^{4h} \leftarrow u^{4h} + e^{4h} \\
f^{8h} \leftarrow I_{4h}^{8h}(f^{4h} - A^{4h}u^{4h}) & e^{4h} \leftarrow I_{8h}^{4h}u^{8h} \\
u^{8h} \leftarrow G^{V}(A^{8h}, f^{8h}) \bigcirc & u^{8h} \leftarrow u^{8h} + e^{8h}
\end{array}$$

$$\begin{array}{c}
e^{H} = (A^{H})^{-1}f^{H}
\end{array}$$

Multigrid cycles

Schedule of multilevel grids in standard multigrid algorithms:

Testcase

Set $\Omega = (0, 1)$. Consider:

$$-\Delta u = 0$$
 in Ω
 $u = 0$ at $\partial \Omega = \{0, 1\}$

Set $N=2^{10}$ and $u_{(\cdot)}^0$ according to:

$$u_i^0 = \sin(2\pi x_i) + \sin(8\pi x_i) + \sin(32\pi x_i) + \sin(128\pi x_i)$$

Perform $\nu = 8$ GS relaxations followed by a coarse-grid correction.

0 GS⁸ relaxation 0 CG correction

1 GS⁸ relaxation

1 CG correction

2 GS⁸ relaxation

1 CG correction

3 GS⁸ relaxation

1 CG correction

3 GS⁸ relaxation

3 CG correction

4 GS⁸ relaxation

4 CG correction

2-D Laplace Problem

Five-point stencil discretization on a uniform grid

$$-\nabla^2 u = f$$

$$A = \begin{bmatrix} -1 & -1 \\ -1 & 4 & -1 \end{bmatrix}$$

- Smoothers: weighted Jacobi or GS (lexicographical or red/black)
- Full coarsening, bilinear interpolation

$$P = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

Coarse discretization (scaled appropriately) for A_c

Full Multigrid (FMG)

Coarse-grid prediction

The coarse grid can also be used to construct an initial approximation for the fine grid.

1 Solve the *H*-grid problem:

$$A^H u^H = f^H$$

Construct an initial approximation for h-grid by prolongation:

$$u^{h,0} = Pu^H$$

Remarks

- Of course, the coarse-grid prediction can again be applied recursively
- Since Pu^H is only an initial approximation, it is not necessary to fully resolve u^H : a suitable approximation will do

Full Multigrid (FMG)

Parallel Multigrid

- Basic communication pattern is "nearest neighbor"
 - Relaxation, interpolation, & Galerkin not hard to implement
- Different neighbor processors on coarse grids
- Many idle processors on coarse grids
 - Algorithms to take advantage have had limited success

Parallel Multigrid

Standard communication / computation models

$$T_{comm} = \alpha + m\beta$$
 (communicate m doubles)
$$T_{comp} = m\gamma$$
 (compute m flops)

Time to do relaxation

$$T \approx 4\alpha + 4n\beta + 5n^2\gamma$$

Time to do relaxation in a V(1,0) multigrid cycle

$$T_V \approx (1+1+\cdots)4\alpha + (1+1/2+\ldots)4n\beta + (1+1/4+\ldots)5n^2\gamma$$

 $\approx (\log N)4\alpha + (2)4n\beta + (4/3)5n^2\gamma$

- For achieving optimality in general, the log term is unavoidable!
- More precise: $T_{V,better} \approx T_V + (\log P)(4\beta + 5\gamma)$

Algebraic Multigrid

For best results, geometry alone is not enough

Linear Interpolation

Operator-Dependent Interpolation

 AMG ignores geometric information altogether, but captures both linear & operator-dep interpolation

$$(A\mathbf{u})_i = a_{i,i-1}u_{i-1} + a_{i,i}u_i + a_{i,i+1}u_{i+1}$$

$$u_i = \left(-\frac{a_{i,i-1}}{a_{i,i}}\right)u_{i-1} + \left(-\frac{a_{i,i+1}}{a_{i,i}}\right)u_{i+1}$$

Algebraic Multigrid

7 GS sweeps on

$$-au_{xx} - bu_{yy} = f$$

$$a = b$$
 $a \gg b$

- This example...
 - targets geometric smoothness
 - uses pointwise smoothers
- Not sufficient for some problems!

AMG coarsens grids in the direction of geometric smoothness

- → select C-pt with maximal measure
- → select neighbors as F-pts
- → update measures of F-pt neighbors

- → select C-pt with maximal measure
- → select neighbors as F-pts
- → update measures of F-pt neighbors

- → select C-pt with maximal measure
- → select neighbors as F-pts
- → update measures of F-pt neighbors

- → select C-pt with maximal measure
- → select neighbors as F-pts
- update measures of F-pt neighbors

AMG Interpolation

Parallel AMG

- → select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Parallel AMG

- → select C-pts with maximal measure locally
- → remove neighbor edges
- → update neighbor measures

Parallel AMG

- → select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Ì		D 11 1 1	TT 1 . 1.11 1 . CTTT 1
05/09	Class 9	Dense direct solvers	Understand the principle of LU decomposition
			and the optimization and parallelization techniques
			that lead to the LINPACK benchmark.
		Dense eigensolvers	Determine eigenvalues and eigenvectors
05/12	Class 10		and understand the fast algorithms for
			diagonalization and orthonormalization.
05/16	Class 11	Sparse direct solvers	Understand reordering in AMD and nested
			dissection, and fast algorithms such as
			skyline and multifrontal methods.
05/19	Class 12	Sparse iterative solvers	Understand the notion of positive definiteness,
			condition number, and the difference between
			Jacobi, CG, and GMRES.
		Preconditioners	Understand how preconditioning affects the
05/23	Class 13		condition number and spectral radius, and
			how that affects the CG method.
05/26	Class 14	Multigrid methods	Understand the role of smoothers, restriction,
			and prolongation in the V-cycle.
05/30	Class 15	Fast multipole methods, H-matrices	Understand the concept of multipole
			expansion and low-rank approximation,
			and the role of the tree structure.

Title