05/09

05/12

05/16

05/19

05/23

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

Class 12

Sparse iterative solvers

Understand the notion of positive definiteness,

condition number, and the difference between
Jacobi, CG, and GMRES.

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

05/26

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

05/30

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.




® Initial error.

lterative Methods

® Error after several iteration

sweeps:

B o S _\__- .
// ...............................................
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Many relaxation
schemes
have the smoothing
property, where
oscillatory
modes of the error

are
eliminated
effectively, but
smooth modes are
damped
very slowly.




Multigrid Methods

o ion:
A smooth function On the coarse grid, the

a smooth error appears to
° s r be relatively higher in

0 frequency: in the example
| it is the 4-mode, out of

| / a possible 16, on the fine

grid, 1/4 the way up the

® Can be represented by linear SP?STQL;"}- TCth ;he coarse.
. . gr’ ¢ ' 's e -mo e OU
m'r.er.'polaﬂon from a coarser of a possible 8, hence it
grid: is 1/2 the way up the

spectrum.

; Relaxation will be more
effective on this mode if
done on the coarser grid!




Multigrid Method

smoothing
(relaxation)

prolongation
(interpolation)

restriction

The Multigrid
V-cycle

Error appoximated on
a smaller coarse grid




Multigrid Methods

A I _ A Correct
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|-D Laplace Problem

= 1D Laplace on a uniform grid with spacing /7

—Ugy = | ON 2 = [O> 1]
u=g onl

Continuous

—Uj—1 + 2Uu; — Uj41 = h?f;

— ug =UuUN41 =49
l L 2 @ . 2 s 2 L 2 s 2 . 2 i
Xo X ces XN XN+t
Discrete

= Discrete problem is a linear system Au = f with

A=

[ 2
~1

\

—1
2 -1

\

—.1'2/

Matrix

or A:[—l 2 —1]

Stencil



|-D Laplace Problem

= 1D Laplace on a uniform grid with spacing /7

—Ugy = | ON 2 = [O> 1]
u=g onl

Continuous
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Restriction

\‘w (relaxation)
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bV

smoothing

ﬁ

The Multigrid
V-cycle
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Error approximated on
a smaller coarse grid

prolongation
(interpolation)




Interpolation (Prolongation)

smoothing
(relaxation)

The Multigrid
V-cycle

Error approximated on
a smaller coarse grid

prolongation
(interpolation)




Interpolation (Prolongation)

+ If uis smooth, a coarse-grid interpolant of v"
may do very well.

+ If uis oscillatory, a coarse-grid interpolant of vZ"
may not work well.



Smoothers

A classical linear iteration for a matrix A of the form
x(FY) = x4 4 R(b — ax))
with some matrix R, is a smoothing iteration if

(I —RA)e is smoother than e for any e.

X(i‘l'l) — X(i) 1 R(b — Ax(l))
x= X + R(b— Ax)
e(i+1) — e(i) — RAe(l)

(Hence smoothing iterations smooth errors.)



Smoothers

A classical linear iteration for a matrix A of the form
x() = x4 4 R(b — Ax))
with some matrix R, is a smoothing iteration if

(I —RA)e is smoother than e for any e.

If D is the diagonal and L is the lower triangular part of A, then
Jacobi iteration: R =D~

GauB-Seidel iteration: R = (L + D)™ *



Multilevel V-cycle

® Major question: How do we "solve” the coarse-grid
residual equation? Answer: recursion

‘ uh e GV (4", ™) u"(—uh+eh‘
£ <—],‘j;7"ffh — A"uh) eh<—1§h u2h
. uh e GV (4?7 u?h — u?h 4+ e2h.
¥ e D" - 4% ) e’ <—-12;i’ uh
LA Gv(A4h,f4h). O ute—uth + ¥
£8h PSR _ g4y 4 o 4h <—I4h 8h
8h 8
ubh e GV (4", f 7)..’ .’ 1 8h ¢ y8h 1 o8h




Multigrid cycles
Schedule of multilevel grids in standard multigrid algorithms:

hl H% H{f “‘53‘” "%f

/L] ° . .
hJ—lah o ﬁ# . ﬁ”‘! ,ﬁ

®
W-cycle FMG schedule



|-D Laplace Example

Testcase
Set (2 = (0, 1). Consider:

—Au=20 in €
=0  atdQ = {0,1)

Set N = 2'° and u(, according to:

u; = sin(2mx;) + sin(87x;) + sin(327x;) + sin(1287x;)

Perform v = 8 GS relaxations followed by a coarse-grid correction.




|-D Laplace Example

\nf\\

0 GS? relaxation 0 CG correc tion
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|-D Laplace Example
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 GS3 relaxation 0 CG correction

0.9




0.04

0.02

-0.02

-0.04

|-D Laplace Example

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

1 GS? relaxation 1 CG correction

0.9
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|-D Laplace Example
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2 GS? relaxation
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1 CG correction



|-D Laplace Example
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2 GS? relaxation 2 CG correction
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|-D Laplace Example
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|-D Laplace Example

_5 | | | | | | | |

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

3 GS? relaxation 3 CG correction
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|-D Laplace Example

4 GS? relaxation

3 CG correction
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|-D Laplace Example

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

4 GS? relaxation 4 CG correction
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2-D Laplace Problem

Five-point stencil discretization on a uniform grid

g > - _1

+—+ _1

h

Smoothers: weighted Jacobi or GS (lexicographical or red/black)
Full coarsening, bilinear interpolation

o1 @
1- 12 1] \11\.‘(11/ l
1 21 2B RSV

- - R

Coarse discretization (scaled appropriately) for 4.



Full Multigrid (FMG)

Coarse-grid prediction

The coarse grid can also be used to construct an initial approximation
for the fine grid.

Solve the H-grid problem:
AR H = 1

Construct an initial approximation for 4-grid by prolongation:

u? = put
Remarks
Of course, the coarse-grid prediction can again be applied
recursively

Since Pu’ is only an initial approximation, it is not necessary to
fully resolve '’ a suitable approximation will do




Full Multigrid (FMG)

FMG 1V-cycle
[=M




Parallel Multigrid

Level 1 Level 2 Level L
o0 000
500000 @ e—O
00009 .
00000 e—0—90 O
Q000000
000000 © e—©0

000000

= Basic communication pattern is “nearest neighbor”
- Relaxation, interpolation, & Galerkin not hard to implement

= Different neighbor processors on coarse grids

= Many idle processors on coarse grids
« Algorithms to take advantage have had limited success



Parallel Multigrid

Standard communication / computation models

Teomm = a + mB (communicate m doubles) nxn grids

Tcomp — mry (compute m ﬂOpS)

Time to do relaxation

T ~ 4a + 4nB + 5n°~

Time to do relaxation in a V(1,0) multigrid cycle

Ty ~ (1414 Dda+ (1+1/24.)4n8+ (L +1/4+..)5n%y
~ (log N)4a + (2)4nB + (4/3)5n°y

For achieving optimality in general, the /og term Is unavoidable!

More precise: Ty petter ~ Ty + (10g P)(453 + 57)



Algebraic Multigrid

= For best results, geometry alone is not enough

Linear Interpolation Operator-Dependent Interpolation

—(kug)s = fi
| h | h |
Xi-1 Xj Xi+1 Xi-1 ki, X ki+y, Xi+1

= AMG ignores geometric information altogether, but
captures both linear & operator-dep interpolation

(Au); = a; j—1uj—1 + a; ju; + a; ;4141

;i1 Aji+1
U = <— ) Ui—1 T+ (— ) Ui41
a; a;




Algebraic Multigrid

= 7 GS sweeps on

a=b|la»bh

....!..:'.'::.'.'..:!E.'.Eif:fiz:: :
+ targets geometric smoothness BmE
- uses pointwise smoothers é :

o NOt sufficient for some problems! T . .:..::.::
AMG coarsens grids in the

direction of geometric smoothness



AMG Coarsening
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AMG Coarsening

OO
ZITOZITOZ0%e

> select C-pt with
maximal measure

> select neighbors

SzitoloZoXdiEEe

’:":":":‘ > update measures
o 2 of F-pt neighbors




AMG Coarsening

3'5'5'5'5'5'3
"‘"‘"‘"‘""‘ > select C-pt with
maximal measure

TIZITOZITON
X

> select neighbors
as F-pts

> update measures
of F-pt neighbors




AMG Coarsening

3'5'5'5'5'5'3
MIXIXIXIXIXE
maximal measure

PRSI
SOTITHTHTN,

7 & > select neighbors
"‘""' as F-pts

> update measures
of F-pt neighbors




AMG Coarsening

PZHZOZOZ0Y

> select C-pt with
maximal measure

> select neighbors
as F-pts

> update measures
of F-pt neighbors



AMG Interpolation




Parallel AMG

maximal measure

locally
> remove neighbor

edges
> update neighbor

> select C-pts with
measures

Ty

L
PatVa!

AN




Parallel AMG

> select C-pts with
maximal measure
locally

> remove neighbor
edges

> update neighbor
measures



Parallel AMG

3.7 5.3 5.0 5.9 2.4 ‘ ‘
':":""" > select C-pts with
5-2"‘8-""5-5 < © O ' maximal measure
N

5—— O @ & & locally
X% @ e S |
5.7'8.6'5.3 3.8 5.3'8.1'5.0 = remove nelghbor
"""‘" ‘ edges
5-3“8.4':5'3 > update neighbor
3'5' .6 measures

8 '3.7
. . 2.8“5.6"2.9
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Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

Class 12

Sparse iterative solvers

Understand the notion of positive definiteness,

condition number, and the difference between
Jacobi, CG, and GMRES.

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

05/30

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.
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