05/09

05/12

05/16

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

05/19

05/23

05/26

05/30

Class 12

Class 13

Sparse iterative solvers

Preconditioners

Understand the notion of positive definiteness,
condition number, and the difference between
Jacobi, CG, and GMRES.

Understand how preconditioning affects the

condition number and spectral radius, and
how that affects the CG method.

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.

2-D Laplace equation

62p 62p
£ L =0
ox2 | oy
AP, L) AR,)
Pij 2(Ax2 + Ay?)
14 -1 -1 \
-1 4 -1 -1
-1 4 -1
-1 4 -1 -1
A= -1 -1 4 -1 -1
-1 -1 4 -1
-1 4 -1
-1 -1 4 -1
' -1 -1 41

dp _
ay 0

p=0 p=y
- . X
p _
ay 0
AXx=Db

Sparse iterative solvers

@ SCiPy.Org G ENTHOUGHT

Scipy.org SciPy v0.17.1 Reference Guide

Sparse linear algebra (scipy.sparse.linalg)

Solving linear problems

Direct methods for linear equation systems:

spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
factorized(A) Return a fuction for solving a sparse linear system, with A pre-factorized.
MatrixRankWarning

use_solver(**kwargs) Select default sparse direct solver to be used.

Iterative methods for linear equation systems:

bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BlConjugate Gradient iteration to solve Ax=Db
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BlConjugate Gradient STABilized iteration to solve Ax=b
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iterationto solve Ax=b

cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration to solve Ax=b

gmres(A, b, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve A x = b.
Ilgmres(A, b[, x0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES algorithm.
minres(A, b[, x0, shift, tol, maxiter, ...]) Use MINimum RESidual iteration to solve Ax=b

gmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iterationtosolve Ax=Db

/ Solvers \ :EEE: Arz = b

Dense matrix Sparse matrix
GaussElimination Ilterative solver Direct solver
LU decomposition
Multifrontal
Supernodal
Stationary method Krylov subspace method
Jacobi CG BiCG BiCGSTAB

Gauss-Seidel GMRES MINRES

SOR

Why iterative methods!?

For many problems, it is not clear which method is best:
* Direct methods are robust

* O(n?) can have a very large constant for iterative methods

¢ Often a combination can be used, e.g. in domain
decomposition or iterative refinement

Model problem | Direct lterative
Computational | O(n?) O(n?)
costs p~~20for2D | p~ 1.4 for 2D
p~~23for3D | p~ 1.2 for 3D
Memory O(n?) O(n)
requirements | p ~ 1.5 for 2D
p =~ 1.7 for 3D

Why iterative methods!?

Direct solvers are great for dense matrices and can be made to avoid
roundoff errors to a large degree. They can also be implemented very
well on modern machines.

Fill-in is a major problem for certain sparse matrices and leads to
extreme memory requirements (e.g., three-d.

Some matrices appearing in practice are too large to even be
represented explicitly (e.g., the Google matrix).

Often linear systems only need to be solved approximately, for
example, the linear system itself may be a linear approximation to a
nonlinear problem.

Direct solvers are much harder to implement and use on (massively)
parallel computers.

Gauss-Seidel

k+1 1

Stationary Methods

k :
Z @ij T () b; 1=1,...

1=1,77#1
1—1

(k+1) (k)
Zaw Iy T Z aij T b,
7=1 J=1+1

Stationary methods

A=D-L-U

Jacobi Iteration

x* D =D ML+ U)x*® +D b

Gauss-Seidel

N

™

&

=

x) = (1-D'L)"'D'Ux® + (I-D'L)"'D~'b

7
2

Successive Over-Relaxation

x**tD) = (D —wL) (1 —w)D + wU)x® + (D —wL) 'wb

Basic lterative Methods for Linear Systems

Consider the system of equations
Ax = b.
Let us split Ainto
A=M-K

where M is any non-singular matrix and K = M — A.
Hence, Ax = b becomes

(M- K)x = b
Mx = Kx + b
Xx=M"T1Kx - M~ b

Basic lterative Methods for Linear Systems, contd

This suggests the iteration scheme: For k = 1,2, 3, ... repeat
X(k—|-1) _ M—1 KX(k) 4 M—1b
until convergence.

Of course, for this iteration to be computationally practical, the
splitting of A should be chosen such that M—'K and M~1b are

easy to calculate.

We will study splittings based on the diagonal, and the upper /
lower triangular parts of A:

A=D-U-L

Jacobi's Method

So-called Jacobi iteration is defined by choosing the splitting
A=D-(L+U)=M-K

where D is the diagonal of A, —L is the strictly lower triangle of
A, and —U is the strictly upper triangle of A.

The iteration scheme takes the form
x) = D=1 (L+ U)x®) + Db

Note that D is easy to invert since it is a diagonal matrix.

The Gauss-Seidel Method

In the (forward) Gauss-Seidel method A is split into
A=(D-L)-U=M-K
yielding the iteration scheme
x5 = (D — L)~T(Ux™) + b)

Since D — L is lower triangular the effect of (D — L)~ can be
computed by forward elimination.

The (backward) Gauss-Seidel method instead uses

Successive Over-Relaxation (SOR)

A more sophisticated method is obtained by choosing

A:(iD—L)—(1;wDI U)y=M—K

where w is a relaxation parameter.

This gives the iteration scheme

XKD — (D — wl) N wU+ (1 —w)D)x) + w(D—wlL)™'b

_ _
L - _
_

ool
e et
0-0Q-¢®-1-----
(o oo

’ ‘ ']] |

Parallel version (5 point stencil)

white

Boundary values:
Data on PO:

green
blue

Ghost cell data:

Parallel version (5 point stencil)

NS v

OOO\ O—0O—70
O O O O @ /f © O C
O O O O @ ® O O O C
O\OOOO QOOO/A
| o0
o0 @ o0 @
O//OOOO COOO\A
O O O O @ ® O O O C
O O 0 0 © \‘ © O C
OOO/ O—0O0——0

~ N

Communicate ghost cells before each step.

Red-Black Gauss-Seidel

oooc0e00

o000 00
¢ 090
o0 o000
Peoeee
00000

Red depends only on black, and vice-versa.
Generalization: multi-color orderings

Red black Gauss-Seidel step

/ Solvers \ :EEE: Arz = b

Dense matrix Sparse matrix
GaussElimination Ilterative solver Direct solver
LU decomposition
Multifrontal
Supernodal
Stationary method Krylov subspace method
Jacobi CG BiCG BiCGSTAB

Gauss-Seidel GMRES MINRES

SOR

Alexei Nikolaevich Krylov

Maritime Engineer

300 papers and books:
shipbuilding, magnetism,
artillery, math, astronomy

1890: Theory of oscillating
motions of the ship

1863-1945 1931: Krylov subspace methods

Conjugate gradient method as iterative method

In exact arithmetic

e CG was originally proposed as a direct (non-iterative) method

e in theory, convergence in at most n steps

in practice

e due to rounding errors, CG method can take > n steps (or fail)
e CG is now used as an iterative method
e with luck (good spectrum of A), good approximation in < n steps

e attractive if matrix-vector products are inexpensive

conjugate gradient

Web Images Videos News Shopping More ~ Search tools

About 770,000 results (0.27 seconds)

In mathematics, the conjugate gradient method is an algorithm for the
numerical solution of particular systems of linear equations, namely
those whose matrix is symmetric and positive-definite.

Conjugate gradient method - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Conjugate_gradient_method

More about Conjugate gradient method

Feedback

Conjugate gradient method - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Conjugate_gradient_method ~

In mathematics, the conjugate gradient method is an algorithm for the numerical
solution of particular systems of linear equations, namely those whose matrix is
symmetric and positive-definite.

Nonlinear conjugate gradient - Preconditioner - Biconjugate gradient method

(PoF] An Introduction to the Conjugate Gradient Method Without...
www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf ~

by JR Shewchuk - 1994 - Cited by 1646 - Related articles

The idea of quadratic forms is introduced and used to derive the methods of Steepest
Descent, Conjugate Directions, and Conjugate Gradients. Eigenvectors are explained
and used to examine the convergence of the Jacobi Method, Steepest Descent, and
Conjugate Gradients.

An Introduction to
the Conjugate Gradient Method
Without the Agonizing Pain
Edition 1%
Jonathan Richard Shewchuk
August 4, 1994

2X2 example

x'Ax > 0

Q
e
£
o
Q
O
) 2
RS =
c . S
5 s a
O = |
. — nl.mlw mlw
.MM - e <
C I I
e & =&
o - =
.U
(O
—
NO)
(O
3
§ 3 =

Y,
/// \
T

Indefinite

Singular

111111/

H&\\\\w\\\\\\

1/ /

\\\\\\\\\ \\\\\

\\\\\\ / [[/

/ / \ / \\ [\..\ / [] \

._m.\._ _*___. ..__N._ _..__._ __ _,_. _“._ _*_ W ./' 9\ \ \ \\ W\\ \\\.

" ﬁ LN \ 7
RN /
| _._ _,__ __.., /. ///H..l _—
. ._._ ,,, \ / ru-t% -

_f, / ./, ' / ///-l ¥ l-\\\ \ &

Steepest decent

€y = Ly — L

re) =b— Az = —Aeiy = —f(2()

Suppose we start at z(g) = [—2, 2|
We take a series of steps z(y), z(3), . ..

Z(1) = Z(0) + aT(0)

riyre = 0

Steepest decent

.
S N "))
://ff'i—*‘““av\\\\% (b— Az(y)) 1) =
T -
/ S \\\\ (b— A(z() +ar)) o) =
/ P (b— Az))" ro) — a(Ar))" r()

I
© © © ©

4 2 2 s 1 - .
((f\/:\‘ x (b— A-'L'(O)’)f T'(0) a(fT(O))T T'(0)
2 A, | 1'(10) T(0) ar(lo) (A7)

& | - _ 0"
M// - 'I'T A’I’ 0 .
*&\“__, s (0)41"(0)
AN _ F\\\\\\-”/
Q) = Ti]i‘)r(i)
i) — T)
r(li)A'r(,-)

T(i+1) = L) + A6)T(i)-

Ti+1) = T() — QG)ATq)-

Taking fewer steps

/

orthogonal search directions d gy, d(yy, - - -, d;,—1

T(i+1) = @) + o) dg)

d'(li‘)e(z'-i-l) = 0
diiy(eq) + a@dp) = 0
d(lz)e(i)
1 A = 7
- dfyd

if we knew ¢;) , the problem would already be solved

Conjugate direction

orthogonal

dfydi)=

A-orthogonal = conjugate

d(z)Ad(j) =0

| ///ﬁmwz

g

(i
- : |

/|.\ |

=4

Conjugate direction

Conjugate gradient

dig) =r(0) = b — Az(g)

1:(11") (i)

0= ‘{(Ia) Ad(i)

T(i+1) = T() +i)d),

r+1) = T(i) — @) Adg),

Brist) = Tilz"+1)7'(i+l)
1+1) — T)
"(Iz')"(i)

dii+1) = i+ + Ba+da

’ Steepest decent
\’/Conjugate gradient

Choosing a Krylov method

A symmetric?
No Yes
Al available? A definite?
No Yes No Y\
Is storage Is A well- Is A well- Largest and smallest
expensive? conditioned? conditioned? eigenvalues known?
No Yes No Yes Yes No No Yes
t ! 1 | I 1
Try GMRES | | Try CGS or Try QMR Try CG on Try MINRES Try CG Try CG with
Bi-CGStab or normal equations | | or a method for Chebyshev Accel.
GMRES(k) nonsymmetric A

source: . Demmel

|1AU]|

10

10

10

10

10

10-10

-12
10

10

107°

Preconditioning

- Jacobi

— SOR w=1.0
—— SOR w=1.9
—— Conjugate Gradient

- Preconditioned CG

100

200

300
lteration

400

500

05/09

05/12

05/16

05/19

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

Class 12

Sparse iterative solvers

Understand the notion of positive definiteness,

condition number, and the difference between
Jacobi, CG, and GMRES.

05/23

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

05/26

05/30

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.

