ì					
05/09	Class 9	Dense direct solvers	Understand the principle of LU decomposition		
	Class 5		and the optimization and parallelization techniques		
			that lead to the LINPACK benchmark.		
		Dense eigensolvers	Determine eigenvalues and eigenvectors		
05/12	Class 10		and understand the fast algorithms for		
			diagonalization and orthonormalization.		
05/16	Class 11	Sparse direct solvers	Understand reordering in AMD and nested		
	Class 11		dissection, and fast algorithms such as		
			skyline and multifrontal methods.		
05/19	Class 12	Sparse iterative solvers	Understand the notion of positive definiteness,		
			condition number, and the difference between		
			Jacobi, CG, and GMRES.		
		Preconditioners	Understand how preconditioning affects the		
05/23	Class 13		condition number and spectral radius, and		
			how that affects the CG method.		
05/26	Class 14	Multigrid methods	Understand the role of smoothers, restriction,		
03/26			and prolongation in the V-cycle.		
	Class 15	Fast multipole methods, H-matrices	Understand the concept of multipole		
05/30	Class 15		expansion and low-rank approximation,		
			and the role of the tree structure.		

Dense linear algebra

Linear systems

$$Ax = b$$

$$A = LDU$$

Least squares

$$||Ax-b||$$

Eigenvalues

$$Ax = \lambda x$$

$$A = Q\Lambda Q^{-1}$$

Singular values

$$A^T A x = \sigma^2 x$$

$$A = U\Sigma V$$

numpy.linalg.eigvals

numpy.linalg.eigvals(a)

[source]

Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren't returned.

Parameters: a : (..., M, M) array_like

A complex- or real-valued matrix whose eigenvalues will be computed.

Returns: w: (..., M,) ndarray

The eigenvalues, each repeated according to its multiplicity. They are not necessarily

ordered, nor are they necessarily real for real matrices.

Raises: LinAlgError

If the eigenvalue computation does not converge.

See also:

eig eigenvalues and right eigenvectors of general arrays

eigvalsh eigenvalues of symmetric or Hermitian arrays.

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the <u>_geev LAPACK routines</u> which compute the eigenvalues and eigenvectors of general square arrays.

LAPACK

Software/Algorithms follow hardware evolution in time

EISPACK (70's) (Translation of Algol)

LINPACK (80's) (Vector operations)

Rely on

- Level-1 BLAS operations
- Column oriented

LAPACK (90's) (Blocking, cache friendly)

Rely on

Level-3 BLAS operations

ScaLAPACK (00's) (Distributed Memory)

PLASMA (10's) New Algorithms (many-core friendly)

Rely on

PBLAS Mess Passing

Rely on

- DAG/scheduler
- block data layout
- some extra kernels

Eigenvalues & eigenvectors

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A \in \mathbb{R}^{n \times n}$$

 λ : eigenvalue (scalar)

x: eigenvector (vector)

 (λ, \mathbf{x}) : eigenpair

characteristic polynomial

$$|A - \lambda I| = 0$$

Eigenvalues of geometric transformations

	scaling	unequal scaling	rotation	horizontal shear	hyperbolic rotation
illustration		B ₂ a ₂			
matrix	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$	$\begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$	$\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ $c = \cos \theta$ $s = \sin \theta$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} c & s \\ s & c \end{bmatrix}$ $c = \cosh \varphi$ $s = \sinh \varphi$
characteristic polynomial	$(\lambda - k)^2$	$(\lambda - k_1)(\lambda - k_2)$	$\lambda^2 - 2c\lambda + 1$	$(\lambda - 1)^2$	$\lambda^2 - 2c\lambda + 1$
eigenvalues λ_i	$\lambda_1 = \lambda_2 = k$	$\lambda_1 = k_1$ $\lambda_2 = k_2$	$\lambda_1 = e^{\mathbf{i}\theta} = c + s\mathbf{i}$ $\lambda_2 = e^{-\mathbf{i}\theta} = c - s\mathbf{i}$	$\lambda_1 = \lambda_2 = 1$	$\lambda_1 = e^{arphi}$ $\lambda_2 = e^{-arphi}$
eigenvectors	All non-zero vectors	$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ $u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	$u_1 = \begin{bmatrix} 1 \\ -\mathbf{i} \end{bmatrix}$ $u_2 = \begin{bmatrix} 1 \\ 1 \\ +\mathbf{i} \end{bmatrix}$	$u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $u_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$

Eigenvalue algorithms

$$|A-\lambda I| = 0$$

 $A = \lambda I = 0$ polynomial root finding is an ill-conditioned problem

If A is Hermitian $A = Q\Lambda Q^*$

$$A = Q\Lambda Q^*$$

eigenvalue decomposition singular value decomposition

If not ...

$$A = QTQ^*$$

Schur factorization

T: upper-triangular

Householder transformation

Fast eigenvalue algorithms

- Power iteration
- Inverse iteration
- Rayleigh quotient iteration
- Arnoldi iteration
- Lanczos algorithm
- QR algorithm

Power iteration

Determines one eigenvalue with largest absolute value

Useful when A is very large and sparse

Cannot find complex eigenvalues

Initialize : $q_0 = a \text{ random vector}$

for
$$k = 1, 2, ...$$
do

$$z_k = Aq_{k-1}$$

$$q_k = \frac{z_k}{||z_k||}$$

$$\lambda(k) = q_k^T A q_k$$

end for

Inverse iteration

$$(A-\mu I)^{-1}$$
 has eigenpair $\left(\frac{1}{\lambda-\mu},\mathbf{x}\right)$

Use a prior estimate of eigenvalue to get current eigenvalue

Initialize :
$$q_0 =$$
 a random vector for $k = 1, 2, ...$ do
$$Solve : (A - \mu I)z_k = q_{k-1}$$

$$q_k = \frac{z_k}{||z_k||}$$

$$\lambda(k) = q_k^T A q_k$$
end for

Rayleigh quotient iteration

Replaces the estimated eigenvalue with the Rayleigh quotient

Faster convergence: quadratic in general and cubic for Hermitian matrix

Initialize : $q_0 = a \text{ random vector}$

for
$$k = 1, 2, ...$$
do

$$\mu_{k-1} = \frac{q_{k-1}^T A q_{k-1}}{q_{k-1}^T q_{k-1}}$$

Solve:
$$(A - \mu_{k-1}I)z_k = q_{k-1}$$

$$q_k = \frac{z_k}{||z_k||}$$

$$\lambda(k) = q_k^T A q_k$$

end for

Arnoldi iteration

Uses the stabilized Gram-Schmidt process to produce a sequence of orthonormal vectors

end for

Lanczos algorithm

Assume we have orthonormal vectors

$$\mathbf{q}_1, \, \mathbf{q}_2, \, \ldots, \, \mathbf{q}_N$$

• Simply let $\mathbf{Q} = [\mathbf{q}_1, \, \mathbf{q}_2, \, \dots, \, \mathbf{q}_k]$ hence

$$\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$$

• We want to change A to a tridiagonal matrix T, and apply a similarly transformation:

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{T} \text{ or } \mathbf{A} \mathbf{Q} = \mathbf{Q} \mathbf{T}$$

• So we define T to be

$$T_{k+1,k} = \begin{bmatrix} \alpha_1 & \beta_1 & 0 & \dots & \dots & 0 \\ \beta_1 & \alpha_2 & \beta_2 & 0 & \dots & 0 \\ 0 & \beta_2 & \alpha_3 & \beta_3 & 0 & \dots & \vdots \\ \vdots & 0 & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \dots & \beta_{k-1} \\ 0 & \dots & \dots & \dots & 0 & \beta_{k-1} & \alpha_k \\ 0 & \dots & \dots & \dots & \dots & 0 & \beta_k \end{bmatrix}$$

Lanczos algorithm

- After k steps we have $\mathbf{AQ}_k = \mathbf{Q}_{k+1}T_{k+1,k}$ for $\mathbf{A} \in \mathbb{C}^{N,N}$, $\mathbf{Q}_k \in \mathbb{C}^{N,k}$, $\mathbf{Q}_{k+1} \in \mathbb{C}^{N,k+1}$, $\mathbf{T}_{k+1,k} \in \mathbb{C}^{k+1,k}$.
- We observe that

$$\mathbf{A}\mathbf{Q}_k = \mathbf{Q}_{k+1}T_{k+1,k} = \mathbf{Q}_kT_{k,k} + \beta_k\mathbf{q}_{k+1}\mathbf{e}_k^T$$

• Now $\mathbf{AQ} = \mathbf{QT}$ hence

$$A[\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k] = [\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k] T_k$$

The first column of the left hand side matrix is given by

$$\mathbf{A}\mathbf{q}_1 = \alpha_1\mathbf{q}_1 + \beta_1\mathbf{q}_2$$

• The ith term by

$$\mathbf{A}\mathbf{q}_i = \beta_{i-1}\mathbf{q}_{i-1} + \alpha_i\mathbf{q}_i + \beta_i\mathbf{q}_{i+1},^{\dagger} \quad i = 2,\dots$$

• We wish to find the alphas and betas so multiply † by \mathbf{q}_i^T so that

$$\mathbf{q}_{i}^{T} \mathbf{A} \mathbf{q}_{i} = \mathbf{q}_{i}^{T} \beta_{i-1} \mathbf{q}_{i-1} + \mathbf{q}_{i}^{T} \alpha_{i} \mathbf{q}_{i} + \mathbf{q}_{i}^{T} \beta_{i} \mathbf{q}_{i+1}$$

$$= \beta_{i-1} \mathbf{q}_{i}^{T} \mathbf{q}_{i-1} + \alpha_{i} \mathbf{q}_{i}^{T} \mathbf{q}_{i} + \beta_{i} \mathbf{q}_{i}^{T} \mathbf{q}_{i+1}$$

$$= \alpha_{i} \mathbf{q}_{i}^{T} \mathbf{q}_{i}$$

• We obtain β_i by rearranging [†] from the recurrence formula

$$\mathbf{r}_i \equiv \beta_i \mathbf{q}_{i+1} = \mathbf{A} \mathbf{q}_i - \alpha_i \mathbf{q}_i - \beta_{i-1} \mathbf{q}_{i-1}$$

• We assume $\beta_i \neq 0$ and so $\beta_i = ||\mathbf{r}_i||_2$.

Lanczos algorithm

Initialize :
$$q_0 = 0$$
, $q_1 = b/||b||$, $\beta_0 = 0$
for $k = 1, 2, ...$ do
 $v = Aq_k$
 $\alpha_k = q_k^T v$
 $v = v - \beta_{k-1}q_{k-1} - \alpha_k q_k$
 $\beta_k = ||v||$
 $q_{k+1} = v/\beta_k$
end for

QR algorithm

QR factorization of A at step k $\longrightarrow A_k = Q_k R_k$

A at step k+I
$$\ A_{k+1}=R_kQ_k$$

Initialize :
$$A_0 = A$$

for
$$k = 1, 2, ...do$$

$$Q_k R_k = A_{k-1}$$

$$A_{k+1} = R_k Q_k$$

end for

Practical QR algorithm

- 1. Before starting the iteration, A is reduced to tridiagonal form
- 2. Instead of A_k a shifted matrix A_k - $\mu_k I$ is factored
- 3. Whenever an eigenvalue is found, the problem is deflated by breaking A_k into submatrices

Initialize :
$$Q_0^T A_0 Q_0 = A$$
 (tridiagonal A_0)
for $k = 1, 2, ...$ do
$$\mu_k = A_{k,mm}$$

$$Q_k R_k = A_{k-1} - \mu_k I$$

$$A_k = R_k Q_k + \mu_k I$$
If any off diagonal element $A_{j,j+1}$ is sufficiently close to 0, set $A_{j,j+1} = A_{j+1,j} = 0$ to obtain
$$\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} = A_k$$

and now apply the QR algorithm to A_1 and A_2 end for

 Deflate the eigenvalues and eigenvectors that don't need to be explicitly computed.

Inherently serial (permutation)

Solve the **secular equation** to compute the eigenvalues.

Parallelizable

 Solve an inverse eigenvalue problem to recover Parallelizable the eigenvectors of the inner system.

Recover the eigenvectors of T by computing
Q = RU, where U has the eigenvectors collected
in Stage 3.

Highly parallelizable (BLAS 3)

5. Reorder the deflated eigenvalues/eigenvectors into their place.

Inherently serial (permutation)

1. Divide

Divide the problem until we reach **base cases**: *k* x *k* tridiagonal systems where *k* is small.

2. Conquer

Decompose the base cases using QR.

3. Merge

Build a partial solution *S* from two eigendecompositions.

Perform **rank-one update** on *S* to take account of *H*.

 By the time the algorithm reaches bulky subproblems, it has only a few merge operations to do – the number of subproblems halves at each level.

Timing Results of Latest Code

Some Timings:

On a $1687 \times 1687~\mathrm{SiOSi_6}$ quantum chemistry matrix,

$ullet$ Time (Algorithm $\mathbf{M}\mathbf{R}^3$)	= 5.5 s.
ullet Time (LAPACK bisection $+$ inverse iteration)	=310 s.
ullet Time (EISPACK bisection $+$ inverse iteration)	= 126 s.
• Time (LAPACK QR)	= 1428 s.
• Time (LAPACK Divide & Conquer)	=81 s.

On a 2000×2000 [1,2,1] matrix,

$ullet$ Time (Algorithm $\mathbf{M}\mathbf{R}^3$)	= 4.1 s.
• Time (LAPACK bisection + inverse iteration)	=808 s.
ullet Time (EISPACK bisection $+$ inverse iteration)	= 126 s.
• Time (LAPACK QR)	= 1642 s.
• Time (LAPACK Divide & Conquer)	= 106 s.

numpy.linalg.eigvals

numpy.linalg.eigvals(a)

[source]

Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren't returned.

Parameters: a : (..., M, M) array_like

A complex- or real-valued matrix whose eigenvalues will be computed.

Returns: w: (..., M,) ndarray

The eigenvalues, each repeated according to its multiplicity. They are not necessarily

ordered, nor are they necessarily real for real matrices.

Raises: LinAlgError

If the eigenvalue computation does not converge.

See also:

eig eigenvalues and right eigenvectors of general arrays

eigvalsh eigenvalues of symmetric or Hermitian arrays.

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the <u>_geev LAPACK routines</u> which compute the eigenvalues and eigenvectors of general square arrays.

Complete Eigensolvers

Generalized Hermitian-definite eigenproblem solver ($Ax = \lambda Bx$)

[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]

<u>3PU</u> Fermi C2050 [448 CUDA Cores @ 1.15 GHz] + Intel Q9300 [4 cores @ 2.50 GHz]			CPU	AMD ISTANBUL [8 sockets x 6 cores (48 cores) @2.8GHz]				
DP peak	515 +	40 GFlop/s		DP peak		538 GFlop/s		
System cost ~ \$3,000			System cost ~ \$30,000					
Power *	~ 220 w			Power *	~	1,022 W		
* Computa	ation consum	ed power rate (total system	n rate minus idle rate), measured v	with K	ILL A WATT P	S, Model P430	

Complete Eigensolvers

Hermitian general eigenvalue solver

- Solve $Ax = \lambda Bx$
- Compute Cholesky factorization of B. $B = \dot{L}L^H$
 - xPOTRF
- Transform the problem to a standard eigenvalue problem $\Delta = L^{-1}\Delta L^{-H}$
 - xHEGST
- Solve Hermitian standard Eigenvalue problem

A'
$$y = \lambda y$$

- xHEEVx
- Transform back the eigenvectors
 - $x = L^{-H} v$
 - xTRSM

Complete Eigensolvers

Hermitian standard eigenvalue solver

- Solve A y = λ y
- Tridiagonalize A

$$T = Q^{H} A' Q$$

- xHETRD
- Compute eigenvalues and eigenvectors of the tridiagonal matryx

$$Ty = \lambda y'$$

- xSTExx
- Transform back the eigenvectors y = Q y'
 - xUNMTR

Tridiagonalization on multiGPUs

w/ Ichitaro Yamazaki, UTK Tingxing Dong, UTK

Keeneland system, using one node

3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

05/09	Class 9	Dense direct solvers	Understand the principle of LU decomposition	
	Class 5		and the optimization and parallelization techniques	
			that lead to the LINPACK benchmark.	
		Dense eigensolvers	Determine eigenvalues and eigenvectors	
05/12	Class 10		and understand the fast algorithms for	
			diagonalization and orthonormalization.	
05/16	Class 11	Sparse direct solvers	Understand reordering in AMD and nested	
	Class 11		dissection, and fast algorithms such as	
			skyline and multifrontal methods.	
05/19	Class 12	Sparse iterative solvers	Understand the notion of positive definiteness,	
			condition number, and the difference between	
			Jacobi, CG, and GMRES.	
		Preconditioners	Understand how preconditioning affects the	
05/23	Class 13		condition number and spectral radius, and	
			how that affects the CG method.	
05/27	Class 14	Multigrid methods	Understand the role of smoothers, restriction,	
05/26			and prolongation in the V-cycle.	
05/30	Class 15	Fast multipole methods, H-matrices	Understand the concept of multipole	
	Class 15		expansion and low-rank approximation,	
			and the role of the tree structure.	