05/09

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

05/12

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

05/16

05/19

05/23

05/26

05/30

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

Class 12

Sparse iterative solvers

Understand the notion of positive definiteness,

condition number, and the difference between

Jacobi, CG, and GMRES.

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.

Dense linear algebra

Linear systems Arz =b
Least squares | Az — b
Eigenvalues Ax = A\r

Singular values At Az = 0%z

A= LDU
A=QAQ!
A=UXV

numpy.linalg.eigvals

numpy.linalg.eigvals(a) [source]
Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren't returned.

Parameters: a: (.. M M)array_like
A complex- or real-valued matrix whose eigenvalues will be computed.

Returns: W (.., M,) ndarray
The eigenvalues, each repeated according to its multiplicity. They are not necessarily
ordered, nor are they necessarily real for real matrices.

Raises: LinAlgError
If the eigenvalue computation does not converge.

See also:

eig eigenvalues and right eigenvectors of general arrays

eigvalsh eigenvalues of symmetric or Hermitian arrays.

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.
Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general
square arrays.

LAPACK

Software/Algorithms follow hardware evolution in time

EISPACK (70’s)
(Translation of Algol)

Rely on
- Fortran, but row oriented

LINPACK (80’s)
(Vector operations)

Rely on
- Level-1 BLAS operations
- Column oriented

LAPACK (90’s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

ScalLAPACK (00’s) Rely on

(Distributed Memory) - PBLAS Mess Passing
PLASMA (10’s) Rely on

New Algorithms - DAG/scheduler

(many-core friendly) - block data layout

- some extra kernels

http://extremecomputingtraining.anl.gov/files/2015/08/dongarra-anl-08 1 5.pdf

Eigenvalues & eigenvectors

Ax = \x

A c Ran

A : eigenvalue (scalar) characteristic polynomial

X : eigenvector (vector) A= M| =0

(A, x) : eigenpair

.) '-
. . . .
o. u. . . o.
. . . 0/0
o N7 .
/. 7
oooooooooo " '. \ . .
oo /oo e Ce A
AN e S
"::..Tl /. .
7 VN R

ooooooooo

oooooooooo

Eigenvalues of geometric transformations

scaling unequal scaling rotation horizontal shear | hyperbolic rotation
illustration h —a =
ki 0 c —5 1 k c s
, 0 kK s cC 0 1 § C
matrix -
¢ = cosf ¢ = cosh
s = sinf s = sinh ¢
haracteristi
Coynomal | AR A =k)A=k) N —2+1 | (A-1)7 | N —2eA+1
. o A =k M =€ =c+ si - A = €7
eigenvalues \; M=M=k Ay = ko Ny = e_w e s AM=MA=1 = o=
u / u - 1' u 1-
_ " Y s _1]
eigenvectors non-zero vectors . 0 1- uy = 0 {
2= 11 u2__+i_ Uz = _1--

Eigenvalue algorithms

m polynomial root finding is an ill-conditioned problem

eigenvalue decomposition

IfAis Hermitian A = QAQ” | I B
singular value decomposition

% .
If not ... A=0QTQ T: upper-triangular
Schur factorization
(X X X X X| (X X X X X| (X X X X X
X X X X X| phasel |X X X X X| phase?2 X X X X
X X X X X| — X X X X| — X X X
X X X X X X X X X X
X X X X X| I X X] X |
A+ A* H T
(X X X X X| (X X | B |
X X X x x| phasel |[x x X phase 2 X
X X X X X| — X X X EE— X
X X X X X X X X X
X X X X X| I X X] X |
A=A T D

Householder transformation

X X X

- X

|
el
el

X XO

i

2

Q5Q1AQ1Q2

Fast eigenvalue algorithms

Power iteration

Inverse iteration

Rayleigh quotient iteration
Arnoldi iteration

Lanczos algorithm

QR algorithm

Power iteration

Determines one eigenvalue with largest absolute value
Useful when A is very large and sparse

Cannot find complex eigenvalues

Initialize : go = a random vector

for k =1,2,...do Pagefank
2k = Aqr—1
<k
k. =
2]

A(k) = q;; Ay

end for

Inverse iteration

1
(A — ,u])_l has eigenpair ()\ — ILL,X)

Use a prior estimate of eigenvalue to get current eigenvalue

Initialize : qo = a random vector
for k=1,2,...do
Solve : (A — ul)zp = qi_1
_ "k
IRIEA
A(k) = gq; Agy

end for

dk

Rayleigh quotient iteration
Replaces the estimated eigenvalue with the Rayleigh quotient

Faster convergence: quadratic in general and cubic for Hermitian matrix

Initialize : go = a random vector
for k=1,2,...do

QIZ_1AQk—1
Hk—1 = —F
4. _19k—1
Solve : (A — pp_11)zr = qr_1
5
dr —
|2k

A(k) = q;; Agy

end for

Arnoldi iteration

Uses the stabilized Gram—Schmidt process to produce a sequence of

orthonormal vectors

Initialize : gg = a random vector with norm |
for k=1,2,...do

qr = Aqr—1
for =1,2,...do
hjk—1= q;qk
qk = Gk — hj k19,
end for

hiek—1 = ||qk||
Rk k—1

dk

end for

So we define T to be

Ths1k =

Lanczos algorithm

Simply let Q = [q1, q2, ...

Assume we have orthonormal vectors

d1, 492, ---s N

, qx| hence

Q'Q =1

QTAQ=Tor AQ=QT

ap B 0O
1 az [
0 (B2 a3
: 0

0

0

Br—1

We want to change A to a tridiagonal matrix T, and apply a similarly transformation:

e (Ck-l-l,k

Lanczos algorithm

After k steps we have AQp = Qpr+1Tk+1 % for A € CN-N, Qp € CNk, Qr+1

Tk+1,k = Ck+L.Ek

We observe that
AQr = Qa1 Trsr x = QuTir + Brarrier

Now AQ = QT hence
Alay, qz, ..., ax] = [a1, a2, ..., ar| Tk
The first column of the left hand side matrix 1s given by
Aq) = a1q; + 192

The 1th term by
Aq; = Bi1Qi—1 + @iq; + Biqis1,] i=2,...

We wish to find the alphas and betas so multiply T by q;-r so that
T T T T
q; Aqgi = q; fi-19i—1 +q; @qi + q; Biqi+1
= Bi—14; di—1 + 04q; i + Bid; Qi
= az'q;‘-rqw:
We obtain 3; by rearranging ' from the recurrence formula
r; = 5iqi+1 = Aq; — a;q; — [Bi—14i—1

We assume (3; # 0 and so 3; = ||r;||.

N.k+1
€C9+,

Lanczos algorithm

Initialize : ¢qo = 0,¢1 = b/|[bl, Bo = 0
for k=1,2,...do

v = Aqy

o = qi v

V=10 — Br—1qk—1 — Ok

Br = |[v]]

Qr+1 = v/ Bk
end for

QR algorithm

QR factorization of A at step k — A, = QkRk

Aatstep k¥l Arr1 = RpQg

Initialize : Ag = A

for k=1,2,...do
Qi = A1
App1 = RpQp

end for

Practical QR algorithm

|. Before starting the iteration, A is reduced to tridiagonal form

2. Instead of Ak a shifted matrix Ax-p«l is factored

Whenever an eigenvalue is found, the problem is deflated by breaking Ax
into submatrices

W

Initialize : Q% ApQo = A (tridiagonal Ag)
for k=1,2,...do
tr = Ak mm
Qe = Ag—1 — pid
Ap = RpQp + ppd
If any off diagonal element A; ;11 is sufficiently close to 0,
set A; i1 =A;11,; =0 to obtain

A4, 0]
AR

and now apply the QR algorithm to A; and A,

end for

Divide and Conquer algorithm

. Deflate the eigenvalues and eigenvectors that Inherently serial

don't need to be explicitly computed. (permutation)
. Solve the secular equation to compute the Parallelizable
eigenvalues.

. Solve an inverse eigenvalue problem to recover Parallelizable
the eigenvectors of the inner system.

. Recover the eigenvectors of T by computing Highly parallelizable
Q = RU, where U has the eigenvectors collected (BLAS 3)
In Stage 3.

. Reorder the deflated eigenvalues/eigenvectors [nherently serial
iInto their place. (permutation)

Divide and Conquer algorithm

1. Divide

Divide the problem until we reach base cases: k x k tridiagonal
systems where k is small.

T S H

2. Conquer
Decompose the base cases using QR.

A N

T Qx Dy Qi

Divide and Conquer algorithm
3. Merge
Build a partia

N\ [N

ution S from two eigendecompositions.

] N
N\ TN I ™\

S R E R

hsi

Perform rank-one update on S to take account of H.

-

\ = \\\\ L i :

=
=

=

=

T S

(z=R"a]

Ml -
m £
[

R \ E Z z!) R

~

Divide and Conquer algorithm

By the time the algorithm reaches bulky subproblems, it has only a
few merge operations to do - the number of subproblems halves at

each level.

lIN=

NS

NS
NS

[[INE
NS

/|
Il
NSNS

[INE

VW W

TN

NS

Many small subproblems

Less bulky
Low compute intensity

AN

N

N
P |

A few large subproblems

Bulkier
High compute intensity

Timing Results of Latest Code

Some Timings :

On a 1687 x 1687 SiOSig quantum chemistry matrix,

e Time (Algorithm MR*) =55s.
e Time (LAPACK bisection + inverse iteration) = 310 s.
e Time (EISPACK bisection + inverse iteration) = 126 s.
e Time (LAPACK QR) = 1428 s.
e Time (LAPACK Divide & Conquer) =8l s.

On a 2000 x 2000 [1,2,1] matrix,

e Time (Algorithm MR?) = 41s.
e Time (LAPACK bisection + inverse iteration) — 808 s.
e Time (EISPACK bisection + inverse iteration) = 126 s.
e Time (LAPACK QR) = 1642 s.
e Time (LAPACK Divide & Conquer) = 106 s.

numpy.linalg.eigvals

numpy.linalg.eigvals(a) [source]
Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren't returned.

Parameters: a: (.. M M)array_like
A complex- or real-valued matrix whose eigenvalues will be computed.

Returns: W (.., M,) ndarray
The eigenvalues, each repeated according to its multiplicity. They are not necessarily
ordered, nor are they necessarily real for real matrices.

Raises: LinAlgError
If the eigenvalue computation does not converge.

See also:

eig eigenvalues and right eigenvectors of general arrays

eigvalsh eigenvalues of symmetric or Hermitian arrays.

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.
Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general
square arrays.

N
< Complete Eigensolvers

Generalized Hermitian-definite eigenproblem solver (Ax=AB x)
[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]

140 /
120 -

— -=CPU (MKL) /
100 - —=+=GPU (MAGMA)
0
o
= w/ Thomas Schulthess &
= 0 Raffaele Solca
o ETH Zurich, Switzerland
20 .
0 "'"—- | T T T | T T 1
2000 2500 3000 3500 4000 4500 5000 5500 6000
Matrix size
GPU Fermi C2050 [448 CUDA Cores @ 1.15 GHz] CPU AMD ISTANBUL
+ Intel Q9300 [4 cores @ 2.50 GHZ] [8 sockets x 6 cores (48 cores) @2.8GHz |
DP peak 515 + 40 GFlop/s DP peak 538 GFlop/s

cost ~ $3,000 cost ~$30,000

* Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/ORNL-ESWorkshop.pdf

N
< Complete Eigensolvers

Hermitian general eigenvalue solver

« Solve AX =ABX

 Compute Cholesky factorization of B.
B =LL"
= XxPOTRF

* Transform the problem to a standard eigenvalue problem
A = L-1AL-H
= xXHEGST
« Solve Hermitian standard Eigenvalue problem
A’y = Ay
= XHEEVX

* Transform back the eigenvectors
x=LHy
= XTRSM

https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/ORNL-ESWorkshop.pdf

g
“ Complete Eigensolvers

Hermitian standard eigenvalue solver

- Solve Ay=Ay
- Tridiagonalize A
T=QIA'Q
= XHETRD

- Compute eigenvalues and eigenvectors of the
tridiagonal matryx
Ty=AYy’

= XSTExX
- Transform back the eigenvectors

y=Qy’
= XUNMTR

https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/ORNL-ESWorkshop.pdf

N
< Tridiagonalization on multiGPUs

zhetrd
220 : , ,
CPU A
2001 -e-1 GPU OB -
—=-2 GPUs AT
180} A)
—A-3 GPUs e
160+ 2 -
Y - o
140_ /X - = = =N .
/X -
3 1201 A -
(@) /a g -4
&5 100F -
2\ 4
80} /& - —-60—C O —0—0—C) _
60} - :
40 P -
/)
//
20+ -
oL ' ' - w/ Ichitaro Yamazaki, UTK
0 . ,1, 12 1042 Tingxing Dong, UTK
X

Keeneland system, using one node
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/ORNL-ESWorkshop.pdf

05/09

05/12

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

05/16

05/19

05/23

05/26

05/30

Class 11

Class 12

Sparse direct solvers

Sparse iterative solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as

skyline and multifrontal methods.

Understand the notion of positive definiteness,

condition number, and the difference between
Jacobi, CG, and GMRES.

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.

