		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
04/21	Class 5	Boundary element methods	Understand the relation between inverse
			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
	Class 6	Molecular dynamics	Understand the significance of symplectic
04/25	Class 0		time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
		Particle mesh methods	How to conserve higher order moments for
05/02	Class 8		interpolations schemes when both particle and
			mesh-based discretizations are used.

Mesh vs Particle

Eulerian Lagrangian

$$\frac{Du_i}{Dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 u_i$$

Finite difference example (step01)

$$\frac{\partial u_i}{\partial t} + c \frac{\partial u_i}{\partial x_i} = 0$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = \epsilon$$

No numerical diffusion

$$\frac{\partial u_i}{\partial t} + c \frac{\partial u_i}{\partial x_j} = 0$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = c$$

Finite difference example (step02)

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_i} = 0$$

$$\mathbf{u}(\mathbf{x}_0, \mathbf{t}_1)$$

$$\mathbf{u}(\mathbf{x}_0, \mathbf{t}_2)$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = u$$

Interpolate back-and-forth

$$u = \frac{\frac{u_1}{l_1} + \frac{u_2}{l_2} + \frac{u_3}{l_3} + \frac{u_4}{l_4}}{\frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_3} + \frac{1}{l_4}}$$

$$u' = \frac{\frac{u'_1}{l'_1} + \frac{u'_2}{l'_2} + \frac{u'_3}{l'_3} + \frac{u'_4}{l'_4}}{\frac{1}{l'_1} + \frac{1}{l'_2} + \frac{1}{l'_3} + \frac{1}{l'_4}}$$

Particle-mesh interpolation (step03)

$$\frac{\partial u_i}{\partial t} + c \frac{\partial u_i}{\partial x_i} = 0$$

$$u = \frac{\frac{u_1}{l_1} + \frac{u_2}{l_2} + \frac{u_3}{l_3} + \frac{u_4}{l_4}}{\frac{1}{l_1} + \frac{1}{l_2} + \frac{1}{l_3} + \frac{1}{l_4}}$$

$$u' = \frac{\frac{u'_1}{l'_1} + \frac{u'_2}{l'_2} + \frac{u'_3}{l'_3} + \frac{u'_4}{l'_4}}{\frac{1}{l'_1} + \frac{1}{l'_2} + \frac{1}{l'_3} + \frac{1}{l'_4}}$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = c$$

Particle-mesh interpolation (step04)

$$\frac{\partial u_i}{\partial t} + c \frac{\partial u_i}{\partial x_j} = 0$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = c$$

Non-linear convection nearest neighbor (step05)

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = 0$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = u_i$$

Non-linear convection interpolation (step06)

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = 0$$

$$\frac{Du_i}{Dt} = 0 \qquad \frac{Dx_i}{Dt} = u_i$$

Particle mesh in molecular dynamics

$$U(\vec{R}) = \underbrace{\sum_{bonds} k_i^{bond} (r_i - r_0)^2 + \sum_{angles} k_i^{angle} (\theta_i - \theta_0)^2 + \sum_{U_{bond}} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)] + \sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)] + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace{\sum_{dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)]}_{\text{total}} + \underbrace$$

 $U_{dihedral}$

$$\sum_{i} \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{i} \sum_{j \neq i} \frac{q_{i}q_{j}}{\epsilon r_{ij}}$$

 $U_{nonbond}$

Periodic boundary conditions

Particle-mesh Ewald

Interpolate onto mesh — Use FFT to solve in wave space

	Class 9	Dense direct solvers	Understand the principle of LU decomposition
05/09	Class 9		and the optimization and parallelization techniques
			that lead to the LINPACK benchmark.
		Dense eigensolvers	Determine eigenvalues and eigenvectors
05/12	Class 10		and understand the fast algorithms for
			diagonalization and orthonormalization.
05/16	Class 11	Sparse direct solvers	Understand reordering in AMD and nested
			dissection, and fast algorithms such as
			skyline and multifrontal methods.
05/19	Class 12	Sparse iterative solvers	Understand the notion of positive definiteness,
			condition number, and the difference between
			Jacobi, CG, and GMRES.
		Preconditioners	Understand how preconditioning affects the
05/23	Class 13		condition number and spectral radius, and
			how that affects the CG method.
05/26	Class 14	Multigrid methods	Understand the role of smoothers, restriction,
			and prolongation in the V-cycle.
05/30	Class 15	Fast multipole methods, H-matrices	Understand the concept of multipole
			expansion and low-rank approximation,
			and the role of the tree structure.