		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
04/21	Class 5	Boundary element methods	Understand the relation between inverse
			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
04/25	Class 6	Molecular dynamics	Understand the significance of symplectic
			time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
05/02	Class 8	Particle mesh methods	How to conserve higher order moments for
			interpolations schemes when both particle and
			mesh-based discretizations are used.

N-body dynamics

2-Body dynamics

Symplectic integrators

$$\dot{p} = -\frac{\partial H}{\partial q}$$
 $p:$ momentum

$$\dot{q} = \frac{\partial H}{\partial p}$$
 $q : position$

Conserves the symplectic two-form $dp \wedge dq$

Volume-preserving

Canonical transformation

Verlet integration

$$x(t + \Delta t) = x(t) + \frac{dx}{dt}(t)\Delta t + \frac{d^2x}{dt^2}(t)\frac{\Delta t^2}{2} + \frac{d^3x}{dt^3}(t)\frac{\Delta t^3}{6} + \mathcal{O}(\Delta t^4)$$

$$x(t - \Delta t) = x(t) - \frac{dx}{dt}(t)\Delta t + \frac{d^2x}{dt^2}(t)\frac{\Delta t^2}{2} - \frac{d^3x}{dt^3}(t)\frac{\Delta t^3}{6} + \mathcal{O}(\Delta t^4)$$

$$\downarrow$$

$$x(t + \Delta t) = 2x(t) - x(t - \Delta t) + \frac{d^2x}{dt^2}(t)\Delta t^2 + \mathcal{O}(\Delta t^4)$$

$$x(1) = x(0) + \frac{dx}{dt}(0)\Delta t + \frac{d^2x}{dt^2}(0)\frac{\Delta t^2}{2}$$

Gravitational potential

$$V(x) = \sum_{i=1}^{N} -\frac{Gm_i}{|\mathbf{x} - \mathbf{x}_i|}$$

Electrostatic potential

$$V(x) = \sum_{i=1}^{N} -\frac{1}{4\pi\epsilon_0} \frac{q_i}{|\mathbf{x} - \mathbf{x}_i|}$$

Lennard-Jones potential

$$V(x) = \sum_{i=1}^{N} 4\epsilon \left[\left(\frac{\sigma}{|\mathbf{x} - \mathbf{x}_i|} \right)^{12} - \left(\frac{\sigma}{|\mathbf{x} - \mathbf{x}_i|} \right)^{6} \right]$$

All Forces

$$U(\vec{R}) = \underbrace{\sum_{bonds} k_i^{bond} (r_i - r_0)^2 + \sum_{angles} k_i^{angle} (\theta_i - \theta_0)^2 + \sum_{U_{angle}} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)] + \sum_{dihedrals} \underbrace{\sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^6 \right] + \sum_{i} \sum_{j \neq i} \frac{q_i q_j}{\epsilon r_{ij}}}_{U_{nonbond}}$$

Time scales

Motion	Time Scale (sec)
Bond stretching	10 ⁻¹⁴ to 10 ⁻¹³
Elastic vibrations	10 ⁻¹² to 10 ⁻¹¹
Rotations of surface sidechains	10 ⁻¹¹ to 10 ⁻¹⁰
Hinge bending	10 ⁻¹¹ to 10 ⁻⁷
Rotation of buried side chains	10 ⁻⁴ to 1 sec
Allosteric transistions	10-5 to 1 sec
Local denaturations	10-5 to 10 sec

Simplified schematic of the molecular dynamics algorithm

Give atoms initial $\mathbf{r}^{(i=0)}$ and $\mathbf{v}^{(i=0)}$, set $\mathbf{a}=0.0$, t=0.0, i=0, choose short Δt

Predictor stage: predict next atom positions:

Move atoms: $\mathbf{r}^p = \mathbf{r}^{(i)} + \mathbf{v}^{(i)} \Delta t + \frac{1}{2} \mathbf{a} \Delta t^2 + \text{more accurate terms}$ Update velocities: $\mathbf{v}^p = \mathbf{v}^{(i)} + \mathbf{a} \Delta t + \text{more accurate terms}$

Get forces ${\bf F}=-\nabla V({\bf r}^p)$ or ${\bf F}={\bf F}(\Psi({\bf r}^p))$ and ${\bf a}={\bf F}/m$

Corrector stage: adjust atom positions based on new a:

Move atoms: $\mathbf{r}^{(i+1)} = \mathbf{r}^p + some function of (a, \Delta t)$

Update velocities: $\mathbf{v}^{(i+1)} = \mathbf{v}^p + some function of (a, \Delta t)$

Apply boundary conditions, temperature and pressure control as needed

Calculate and output physical quantities of interest

Move time and iteration step forward: $t = t + \Delta t$, i = i + 1

Repeat as long as you need

Microcanonical ensemble (NVE)

Equation of state pV = nRT

Adiabatic process

Exchange between potential and kinetic energy

Canonical ensemble (NVT)

Constant temperature

Nosé-Hoover thermostat Hamiltonian with an extra degree of freedom for heat bath

Use thermostats to remove energy from the system

Isothermal-isobaric ensemble (NPT)

Constant temperature, pressure

Use barostats to keep pressure constant

Homework

Measure the convergence rate of FDM step09.py

$$error = \sqrt{\sum_{i,j=1}^{nx,ny} \frac{(p_{exact} - p_{approx})^2}{p_{exact}^2}}$$

The exact solution is available from BEM step02.py

$$p_{exact} = \frac{x}{4} - 4 \sum_{n=odd}^{\infty} \frac{1}{(n\pi)^2 \sinh 2n\pi} \sinh n\pi x \cos n\pi y$$

[Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
04/21	Class 5	Boundary element methods	Understand the relation between inverse
			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
04/25	Class 6	Molecular dynamics	Understand the significance of symplectic
			time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
05/02		Particle mesh methods	How to conserve higher order moments for
	Class 8		interpolations schemes when both particle and
			mesh-based discretizations are used.
·			