		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
	Class 5	Boundary element methods	Understand the relation between inverse
04/21			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
04/25	Class 6	Molecular dynamics	Understand the significance of symplectic
			time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
05/02	Class 8	Particle mesh methods	How to conserve higher order moments for
			interpolations schemes when both particle and
			mesh-based discretizations are used.

Fourier transform

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx,$$

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) \ e^{2\pi i \xi x} \, d\xi,$$

Discrete Fourier transform

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx,$$

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) \ e^{2\pi i \xi x} \, d\xi,$$

$$f(x_n) = \sum_{k=-N/2}^{N/2} \hat{f}_k e^{ikx_n}$$

$$\hat{f}_k = \sum_{n=0}^{N} f(x_n) e^{-ikx_n}$$

Periodic square function

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < \pi \\ -1 & \text{if } \pi \le x < 2\pi \end{cases}$$

k	$\operatorname{Re}(\hat{f}_k)$	$\operatorname{Im}(\hat{f}_k)$	$ \hat{f}_k $
0	0	0	0
1	0.125	-0.628	0.641
2	0	0	0
3	0.125	-0.187	0.225
4	0	0	0
5	0.125	-0.084	0.150
6	0	0	0
7	0.125	-0.025	0.127
8	0	0	0

Fourier transform of a real function

Product of functions in Fourier space

$$H(x) = f(x)g(x)$$

$$\hat{H}_m = (\widehat{fg})_m = \frac{1}{N} \sum_{j=0}^{N-1} f_j g_j e^{-imx_j}$$

$$\hat{H}_m = \frac{1}{N} \sum_{j=0}^{N-1} \sum_{k} \sum_{k'} \hat{f}_k \hat{g}_{k'} e^{ikx_j} e^{ik'x_j} e^{-imx_j}$$

$$\hat{H}_{m} = \sum_{k=-N/2}^{N/2-1} \hat{f}_{k} \hat{g}_{m-k}$$

Product of two functions

$$f(x) = \sin 2x$$

$$g(x) = \sin 3x$$

$$\hat{f}_k = \begin{cases} \mp i/2 & \text{if } k = \pm 2 \\ 0 & \text{otherwise,} \end{cases}$$

$$\hat{g}_k = \begin{cases} \mp i/2 & \text{if } k = \pm 3 \\ 0 & \text{otherwise.} \end{cases}$$

$$H(x) = f(x)g(x)$$

$$\hat{H}_m = \sum_{k=-N/2}^{N/2-1} \hat{f}_k \hat{g}_{m-k}$$

$$H(x) = 0.5(\cos x - \cos 5x)$$

$$\hat{H}_k = \begin{cases} 1/4 & \text{if } k = \pm 1 \\ -1/4 & \text{if } k = \pm 5 \\ 0 & \text{otherwise} \end{cases}$$

Aliasing

$$\hat{H}_m = \sum_{k=-N/2}^{N/2-1} \hat{f}_k \hat{g}_{m-k}$$

Derivative in Fourier space

$$f(x_n) = \sum_{k=-N/2}^{N/2} \hat{f}_k e^{ikx_n}$$

$$f'(x_n) = \sum_{k=-N/2}^{N/2} ik\hat{f}_k e^{ikx_n}$$

Derivative in Fourier space

$$f(x) = \cos 3x \qquad \qquad f'(x) = -3\sin 3x$$

$$\widehat{Df}_k = \begin{cases} -(3/2)i & \text{if } k = -3\\ (3/2)i & \text{if } k = 3\\ 0 & \text{otherwise.} \end{cases}$$

$$f(x) = 2\pi x - x^2$$
 $f'(x) = 2\pi - 2x$

		Course schedule	Required learning	
04/07		Discretizing differential equations	Discretize differential equations using forward,	
	Class 1		backward, and central difference, with high order,	
			and evaluate the discretization error	
		Finite difference methods	Understand stability of low and high order	
04/11	Class 2		time integration, and use it to solve	
			convection, diffusion, and wave equations	
		Finite element methods	Understand the concepts of Galerkin methods,	
04/14	Class 3		test functions, isoparametric elements, and	
			use it to solve elasticity equations.	
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal	
			basis functions such as Fourier, Chebyshev,	
			Legendre, and Bessel.	
04/21	Class 5	Boundary element methods	Understand the relation between inverse	
			matrices, δ functions and Green's functions,	
			and solve boundary integral equations.	
	Class 6	Molecular dynamics	Understand the significance of symplectic	
04/25			time integrators and thermostats, and solve	
			the dynamics of interacting molecules.	
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation	
			properties of differential operators formed	
			from radial basis functions.	
	Class 8	Particle mesh methods	How to conserve higher order moments for	
05/02			interpolations schemes when both particle and	
			mesh-based discretizations are used.	
,				