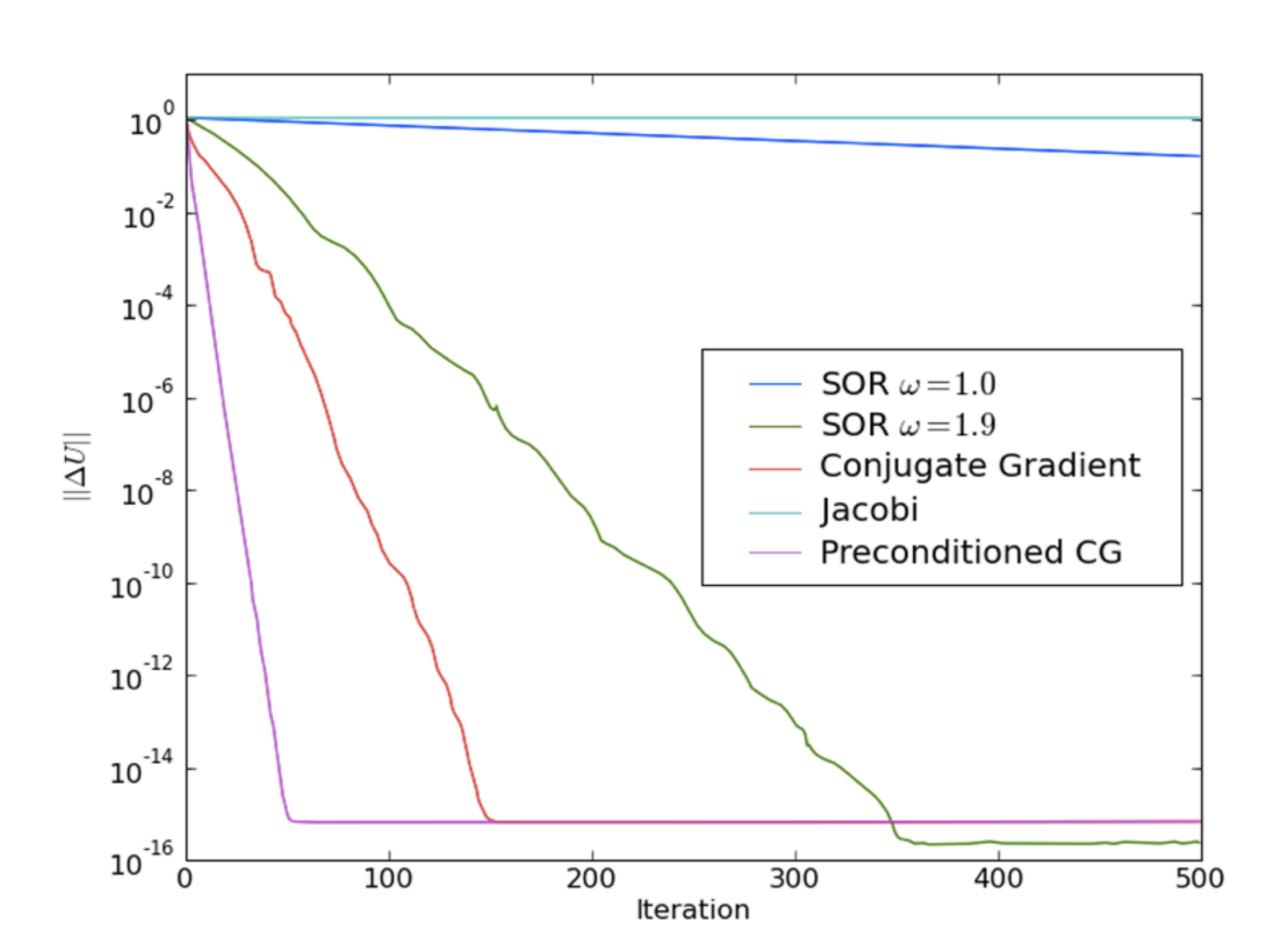
	Dones direct colvers	Understand the principle of LU decomposition		
Class 9	Dense direct solvers	Understand the principle of LU decomposition		
		and the optimization and parallelization techniques		
		that lead to the LINPACK benchmark.		
	Dense eigensolvers	Determine eigenvalues and eigenvectors		
Class 10		and understand the fast algorithms for		
		diagonalization and orthonormalization.		
Class 11	Sparse direct solvers	Understand reordering in AMD and nested		
Class II		dissection, and fast algorithms such as		
		skyline and multifrontal methods.		
Class 12	Sparse iterative solvers	Understand the notion of positive definiteness,		
		condition number, and the difference between		
		Jacobi, CG, and GMRES.		
	Preconditioners	Understand how preconditioning affects the		
Class 13		condition number and spectral radius, and		
		how that affects the CG method.		
Class 14	Multigrid methods	Understand the role of smoothers, restriction,		
		and prolongation in the V-cycle.		
C1 45	Fast multipole methods, H-matrices	Understand the concept of multipole		
Class 15		expansion and low-rank approximation,		
		and the role of the tree structure.		
	Class 11 Class 12 Class 13	Class 10 Class 11 Sparse direct solvers Class 12 Sparse iterative solvers Class 13 Preconditioners Class 14 Multigrid methods Fast multipole methods, H-matrices		

Preconditioning



Sparse iterative solvers

Scipy.org

Docs

SciPy v0.17.1 Reference Guide

Sparse linear algebra (scipy.sparse.linalg)

Solving linear problems

Direct methods for linear equation systems:

factorized(A)

MatrixRankWarning

use_solver(**kwargs)

spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a vector or a matrix.

Return a fuction for solving a sparse linear system, with A pre-factorized.

Select default sparse direct solver to be used.

Iterative methods for linear equation systems:

bicg(A, b[, x0, tol, maxiter, xtype,(M,)...])

bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...])

cg(A, b[, x0, tol, maxiter, xtype, M, callback])

cgs(A, b[, x0, tol, maxiter, xtype, M, callback])

gmres(A, b[, x0, tol, restart, maxiter, ...])

Igmres(A, b[, x0, tol, maxiter, M, ...])

minres(A, b[, x0, shift, tol, maxiter, ...])

gmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...])

Use BIConjugate Gradient iteration to solve Ax = b

Use BIConjugate Gradient STABilized iteration to solve A x = b

Use Conjugate Gradient iteration to solve A x = b

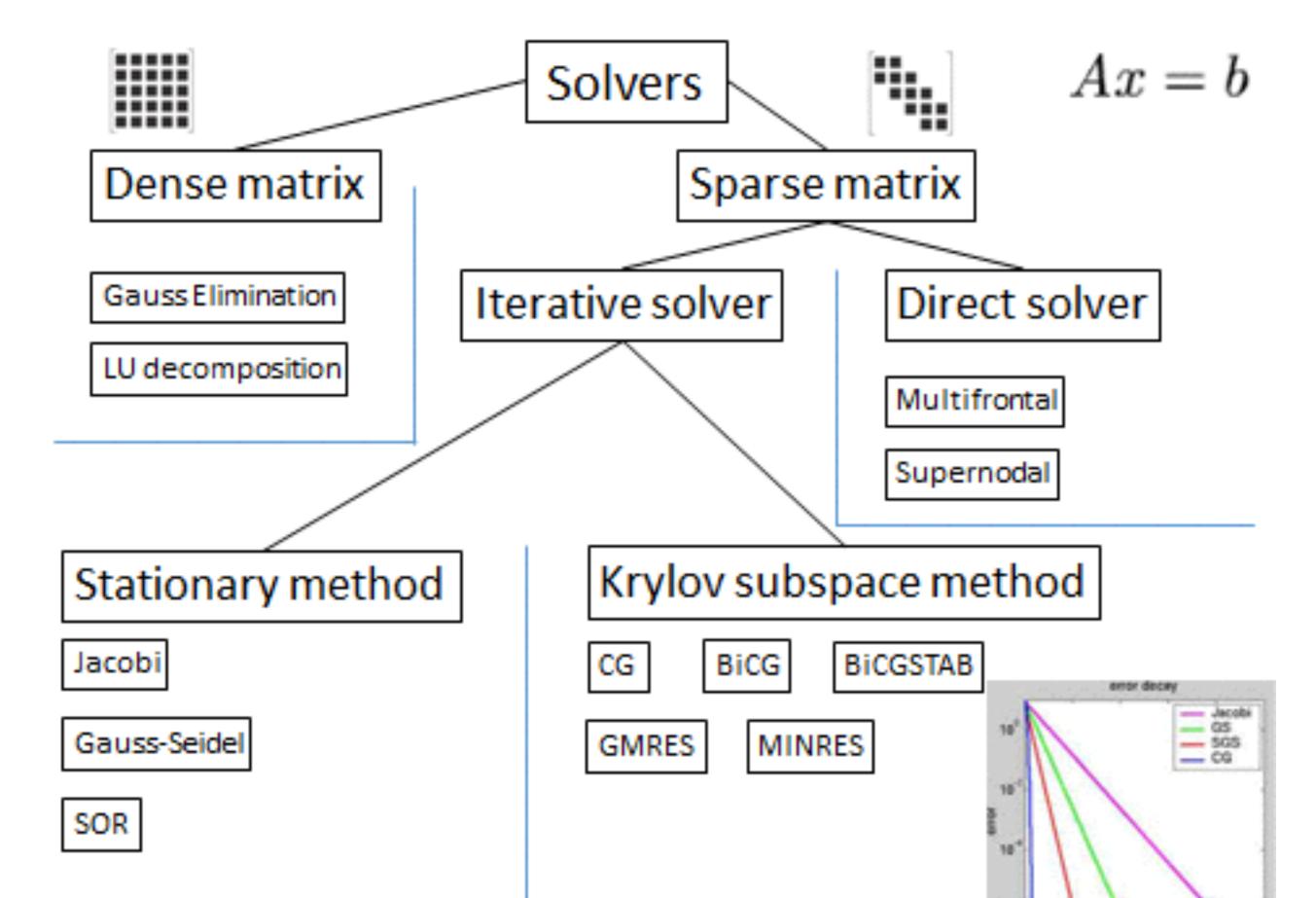
Use Conjugate Gradient Squared iteration to solve A x = b

Use Generalized Minimal RESidual iteration to solve A x = b.

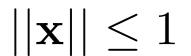
Solve a matrix equation using the LGMRES algorithm.

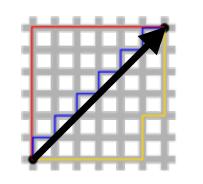
Use MINimum RESidual iteration to solve Ax=b

Use Quasi-Minimal Residual iteration to solve A x = b



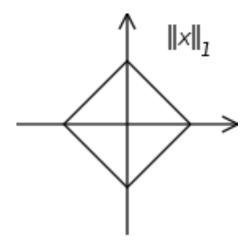
Norm and Condition Number

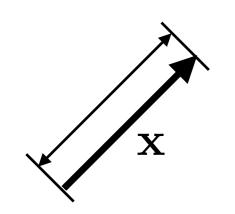




$$||\mathbf{x}||_1 = \sum_{i=1}^n |\mathbf{x}_i|$$

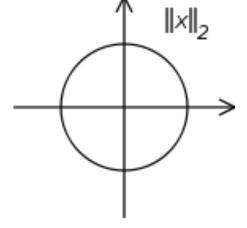
Manhattan norm $\mathcal{L}_1 \text{ norm}$

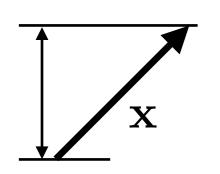




$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n \mathbf{x}_i^2}$$

Euclidean norm $\mathcal{L}_2 \text{ norm}$

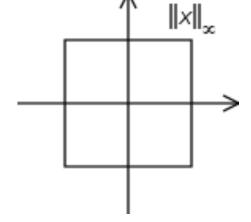




$$||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |\mathbf{x}_i|$$

Maximum norm

 \mathcal{L}_{∞} norm



Norm and Condition Number

Schatten norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |A_{ij}|$$

I-norm

$$||A||_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |A_{ij}^2|}$$

2-norm

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |A_{ij}|$$

Infinity norm

Operator norm

$$||A||_p = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p}$$

Condition number

$$cond(A) = ||A|| ||A^{-1}||$$

Norm and Condition Number

Condition number

$$cond(A) = ||A|| ||A^{-1}|| = \frac{\sigma_{max}}{\sigma_{min}} = \frac{|\lambda_{max}|}{|\lambda_{min}|}$$

if
$$AA^* = A^*A$$

Spectral radius

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$

The following lemma shows a simple yet useful upper bound for the spectral radius of a matrix:

Lemma. Let $A \in \mathbb{C}^{n \times n}$ with spectral radius $\rho(A)$ and a consistent matrix norm $\|\cdot\|$; then, for each $k \in \mathbb{N}$:

$$\rho(A) \le \|A^k\|^{\frac{1}{k}}.$$

Proof: Let (\mathbf{v}, λ) be an eigenvector-eigenvalue pair for a matrix A. By the sub-multiplicative property of the matrix norm, we get:

$$|\lambda|^k ||\mathbf{v}|| = ||\lambda^k \mathbf{v}|| = ||A^k \mathbf{v}|| \le ||A^k|| \cdot ||\mathbf{v}||$$

and since $\mathbf{v} \neq \mathbf{0}$ we have

$$|\lambda|^k \le ||A^k||$$

and therefore

$$\rho(A) \le \|A^k\|^{\frac{1}{k}}.$$

$$\label{eq:force_force} \text{minimize} \quad f(x) = \frac{1}{2} x^T A x - b^T x$$

Optimal value

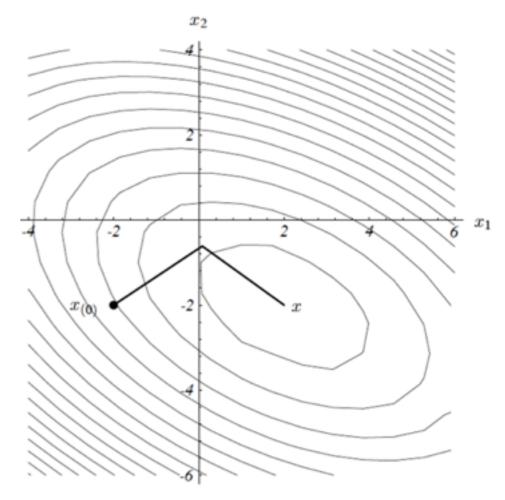
$$f(x^*) = -\frac{1}{2}b^T A^{-1}b = -\frac{1}{2}||x^*||_A^2$$

Suboptimality at x

$$f(x) - f^* = \frac{1}{2} ||x - x^*||_A^2$$

Relative error measure

$$\tau = \frac{f(x) - f^*}{f(0) - f^*} = \frac{\|x - x^*\|_A^2}{\|x^*\|_A^2}$$



Error after k steps

• $x^{(k)} \in \mathcal{K}_k = \text{span}\{b, Ab, A^2b, \dots, A^{k-1}b\}$, so $x^{(k)}$ can be expressed as

$$x^{(k)} = \sum_{i=1}^{k} c_i A^{i-1} b = p(A)b$$

where $p(\lambda) = \sum_{i=1}^k c_i \lambda^{i-1}$ is some polynomial of degree k-1 or less

• $x^{(k)}$ minimizes f(x) over \mathcal{K}_k ; hence

$$2(f(x^{(k)}) - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|_A^2 = \inf_{\deg p < k} \|(p(A) - A^{-1})b\|_A^2$$

we now use the eigenvalue decomposition of A to bound this quantity

eigenvalue decomposition of A

$$A = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T \qquad (Q^T Q = I, \quad \Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n))$$

• define $d = Q^T b$

expression on previous page simplifies to

$$2(f(x^{(k)}) - f^*) = \inf_{\deg p < k} \| (p(A) - A^{-1})b \|_A^2$$

$$= \inf_{\deg p < k} \| (p(\Lambda) - \Lambda^{-1}) d \|_{\Lambda}^2$$

$$= \inf_{\deg p < k} \sum_{i=1}^n \frac{(\lambda_i p(\lambda_i) - 1)^2 d_i^2}{\lambda_i}$$

$$= \inf_{\deg q \le k, \ q(0)=1} \sum_{i=1}^n \frac{q(\lambda_i)^2 d_i^2}{\lambda_i}$$

Absolute error

$$f(x^{(k)}) - f^* \leq \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg q \leq k, \ q(0)=1} \left(\max_{i=1,...,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_{A \deg q \leq k, \ q(0)=1}^2 \left(\max_{i=1,...,n} q(\lambda_i)^2\right)$$

(equality follows from
$$\sum\limits_i d_i^2/\lambda_i = b^T A^{-1} b = \|x^\star\|_A^2)$$

Relative error

$$\tau_k = \frac{\|x^{(k)} - x^*\|_A^2}{\|x^*\|_A^2} \le \inf_{\deg q \le k, \ q(0) = 1} \left(\max_{i = 1, \dots, n} q(\lambda_i)^2 \right)$$

Convergence rate and spectrum of A

• if A has m distinct eigenvalues $\gamma_1, \ldots, \gamma_m$, CG terminates in m steps:

$$q(\lambda) = \frac{(-1)^m}{\gamma_1 \cdots \gamma_m} (\lambda - \gamma_1) \cdots (\lambda - \gamma_m)$$

satisfies $\deg q=m$, q(0)=1, $q(\lambda_1)=\cdots=q(\lambda_n)=0$; therefore $\tau_m=0$

- if eigenvalues are clustered in m groups, then τ_m is small can find $q(\lambda)$ of degree m, with q(0)=1, that is small on spectrum
- if x^* is a linear combination of m eigenvectors, CG terminates in m steps take q of degree m with $q(\lambda_i) = 0$ where $d_i \neq 0$; then

$$\sum_{i=1}^{n} \frac{q(\lambda_i)^2 d_i^2}{\lambda_i} = 0$$

Preconditioner

Main idea: Instead of solving

$$Ax = b$$

solve, using a nonsingular $m \times m$ preconditioner M,

$$M^{-1}Ax = M^{-1}b$$

which has the same solution x

- Convergence properties based on $M^{-1}A$ instead of A
- Trade-off between the cost of applying M^{-1} and the improvement of the convergence properties. Extreme cases:
 - M=A, perfect conditioning of $M^{-1}A=I$, but expensive M^{-1}
 - M=I, "do nothing" $M^{-1}=I$, but no improvement of $M^{-1}A=A$

Preconditioner

How to choose M?

- M should be easy to invert
- $ightharpoonup M^{-1}$ should be close to A^{-1}

Given a stationary iterative method for $A\mathbf{u} = \mathbf{f}$,

$$M\mathbf{u}^{n+1} = (M - A)\mathbf{u}^n - \mathbf{f},$$

at convergence, the system

$$M\mathbf{u} = (M - A)\mathbf{u} - \mathbf{f} \iff M^{-1}A\mathbf{u} = M^{-1}\mathbf{f}$$

is solved. Hence every station-nary iterative method gives raise to a preconditioner!

Example: Block Jacobi or Additive Schwarz without algebraic overlap

$$\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{pmatrix} \mathbf{u}_1^{n+1} \\ \mathbf{u}_2^{n+1} \end{pmatrix} = \begin{bmatrix} 0 & -A_{12} \\ -A_{21} & 0 \end{bmatrix} \begin{pmatrix} \mathbf{u}_1^n \\ \mathbf{u}_2^n \end{pmatrix} + \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$$

Preconditioner

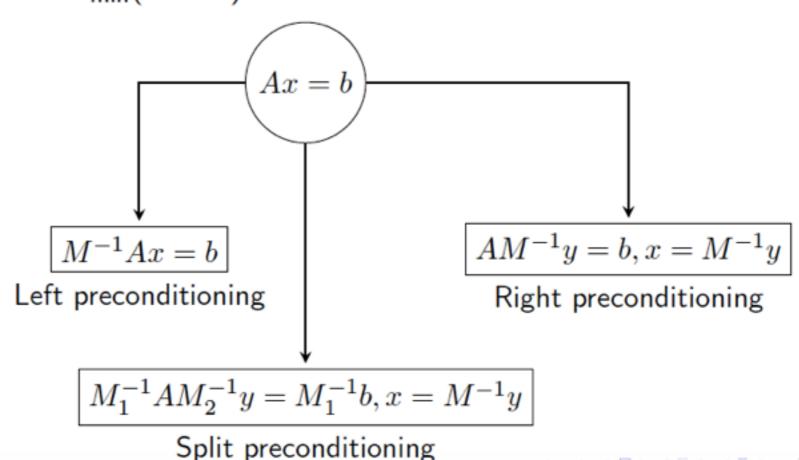
Does this Give a Good Preconditioner?

The stationary iterative method

$$M\mathbf{u}^{n+1} = (M - A)\mathbf{u}^n - \mathbf{f},$$

converges fast, if $\rho(I-M^{-1}A) << 1$. This is equivalent to saying that the spectrum of the preconditioned operator $M^{-1}A$ is close to one. This implies, if the spectrum is real, that

$$\kappa(M^{-1}A) = \frac{\lambda_{\max}(M^{-1}A)}{\lambda_{\min}(M^{-1}A)} \approx 1.$$



Preconditioned Conjugate Gradient

- To keep symmetry, solve $(C^{-1}AC^{-*})C^*x = C^{-1}b$ with $CC^* = M$
- Can be written in terms of M^{-1} only, without reference to C:

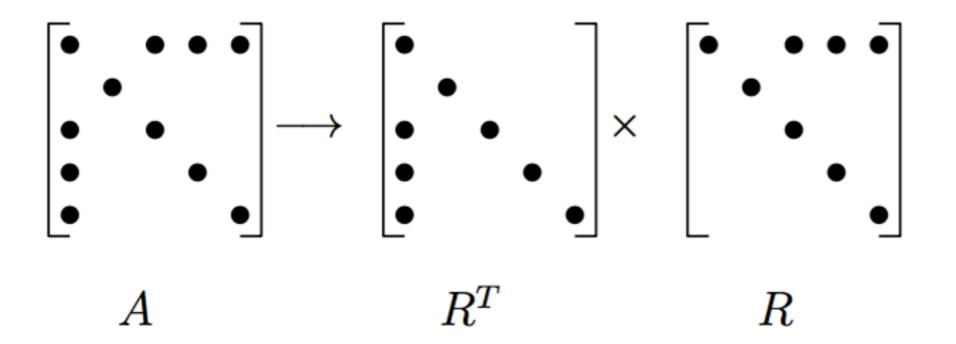
Algorithm: Preconditioned Conjugate Gradients Method

$$x_0 = 0, r_0 = b$$
 $p_0 = M^{-1}r_0, z_0 = p_0$
for $n = 1, 2, 3, \dots$
 $\alpha_n = (r_{n-1}^T z_{n-1})/(p_{n-1}^T A p_{n-1})$
 $x_n = x_{n-1} + \alpha_n p_{n-1}$
 $r_n = r_{n-1} - \alpha_n A p_{n-1}$
 $z_n = M^{-1}r_n$
 $\beta_n = (r_n^T z_n)/(r_{n-1}^T z_{n-1})$
 $p_n = z_n + \beta_n p_{n-1}$

step length
approximate solution
residual
preconditioning
improvement this step
search direction

Various Preconditioners

- ullet A preconditioner should "approximately solve" the problem Ax=b
- Jacobi preconditioning M = diag(A), very simple and cheap, might improve certain problems but usually insufficient
- Block-Jacobi preconditioning Use block-diagonal instead of diagonal. Another variant is using several diagonals (e.g. tridiagonal)
- Classical iterative methods Precondition by applying one step of Jacobi, Gauss-Seidel, SOR, or SSOR
- Incomplete factorizations Perform Gaussian elimination but ignore fill, results in approximate factors $A \approx LU$ or $A \approx R^T R$ (more later)
- Coarse-grid approximations For a PDE discretized on a grid, a preconditioner can be formed by transferring the solution to a coarser grid, solving a smaller problem, then transferring back (multigrid)



- ullet Compute factors of A by Gaussian elimination, but ignore fill
- Preconditioner $B = R^T R \approx A$, not formed explicitly
- Compute $B^{-1}z$ by triangular solves in time O(nnz(A))
- Total storage is O(nnz(A)), static data structure
- Either symmetric (IC) or nonsymmetric (ILU)

- Allow one or more "levels of fill"
 - Unpredictable storage requirements

- Allow fill whose magnitude exceeds a "drop tolerance"
 - May get better approximate factors than levels of fill
 - Unpredictable storage requirements
 - Choice of tolerance is ad hoc
- Partial pivoting (for nonsymmetric A)
- "Modified ILU" (MIC): Add dropped fill to diagonal of U (R)
 - ullet A and R^TR have same row sums
 - Good in some PDE contexts

Choice of parameters

- Good: Smooth transition from iterative to direct methods
- Bad: Very ad hoc, problem-dependent
- Trade-off: Time per iteration vs # of iterations (more fill → more time but fewer iterations)

Effectiveness

- Condition number usually improves (only) by constant factor (except MIC for some problems from PDEs)
- Still, often good when tuned for a particular class of problems

Parallelism

- Triangular solves are not very parallel
- Reordering for parallel triangular solve by graph coloring

ullet Time to solve the Poisson model problem on regular mesh with N nodes:

Solver	1-D	2-D	3-D
Sparse Cholesky	O(N)	$O(N^{1.5})$	$O(N^2)$
CG, exact arith.	$O(N^2)$	$O(N^2)$	$O(N^2)$
CG, no precond.	$O(N^2)$	$O(N^{1.5})$	$O(N^{1.33})$
CG, modified IC	$O(N^{1.5})$	$O(N^{1.25})$	$O(N^{1.17})$
Multigrid	O(N)	O(N)	O(N)

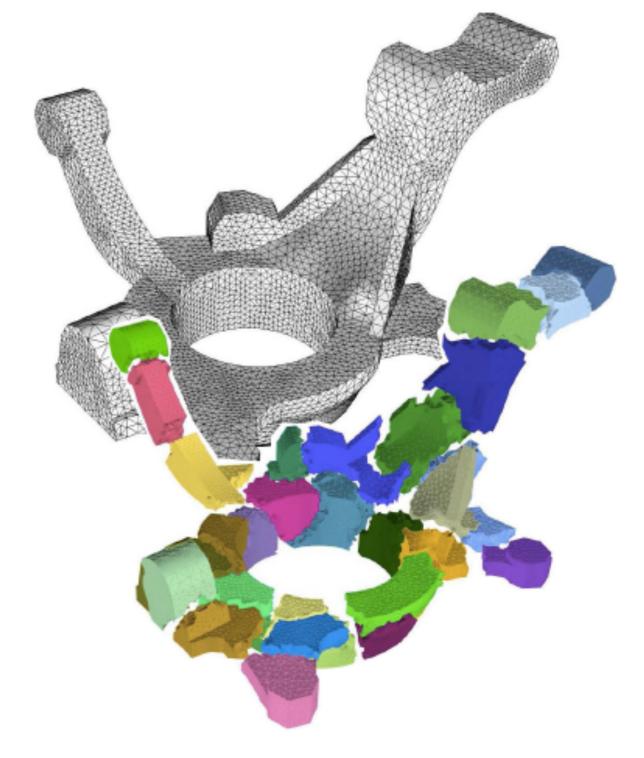
Domain Decomposition

Divide & conquer:

Solve **large** problem by solving **sequence** of **local (smaller)** problems

Applications:

- Iterative solver
- Parallelization
- Coupling different discretizations (BEM, FEM, IGA?)
- Multi physics

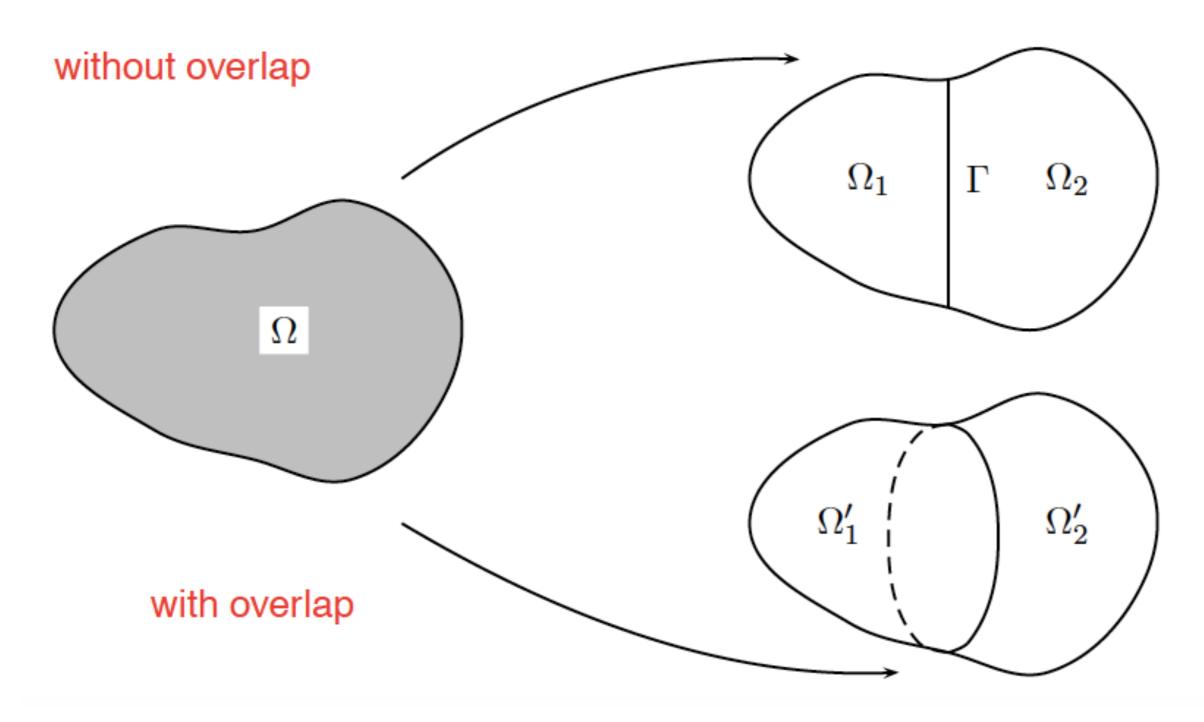


Courtesy of Charbel Farhat

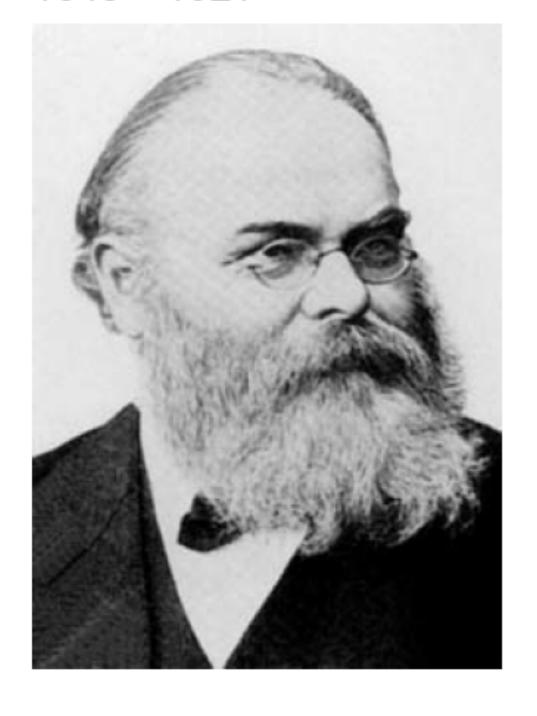
Domain Decomposition

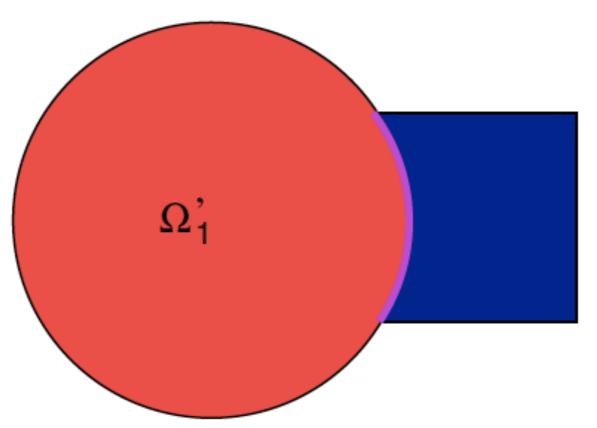
Decomposition of Ω

Let us decompose Ω in two subdomains:



Hermann Amandus Schwarz 1843 – 1921





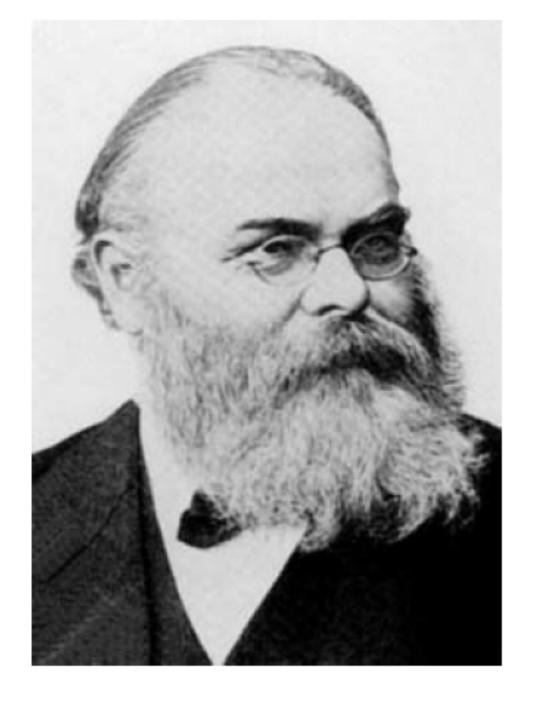
Schwarz's alternating method:

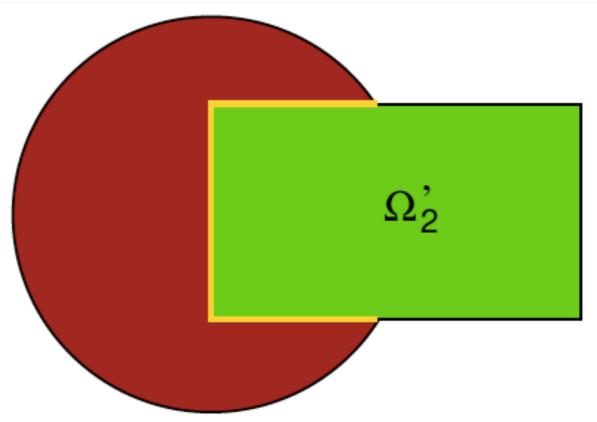
 $u^{(0)} =$ given, satisfying B.C.

$$u^{(n+1/2)} : \begin{cases} -\Delta u^{(n+1/2)} &= f & \text{in } \Omega'_{1} \\ u^{(n+1/2)} &= u^{(n)} & \text{on } \partial \Omega'_{1} \\ u^{(n+1/2)} &= u^{(n)} & \text{on } \Omega \setminus \Omega'_{1} \end{cases}$$

$$u^{(n+1)} : \begin{cases} -\Delta u^{(n+1)} &= f & \text{in } \Omega'_{2} \\ u^{(n+1)} &= u^{(n+1/2)} & \text{on } \partial \Omega'_{2} \\ u^{(n+1)} &= u^{(n+1/2)} & \text{on } \Omega \setminus \Omega'_{2} \end{cases}$$

Hermann Amandus Schwarz 1843 – 1921





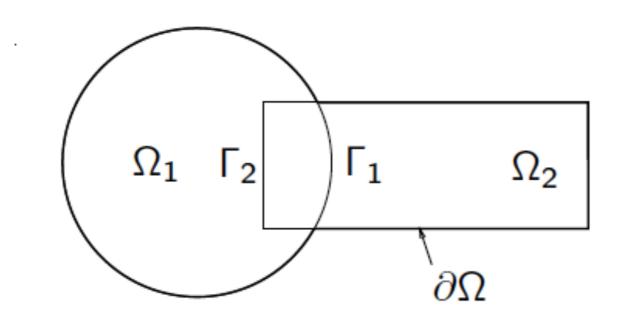
Schwarz's alternating method:

 $u^{(0)} = given, satisfying B.C.$

$$u^{(n+1/2)} : \begin{cases} -\Delta u^{(n+1/2)} &= f & \text{in } \Omega'_{1} \\ u^{(n+1/2)} &= u^{(n)} & \text{on } \partial \Omega'_{1} \\ u^{(n+1/2)} &= u^{(n)} & \text{on } \Omega \setminus \Omega'_{1} \end{cases}$$

$$u^{(n+1)} : \begin{cases} -\Delta u^{(n+1)} &= f & \text{in } \Omega'_{2} \\ u^{(n+1)} &= u^{(n+1/2)} & \text{on } \partial \Omega'_{2} \\ u^{(n+1)} &= u^{(n+1/2)} & \text{on } \Omega \setminus \Omega'_{2} \end{cases}$$

Schwarz invents a method to proof that the infimum is attained: for a general domain $\Omega := \Omega_1 \cup \Omega_2$:

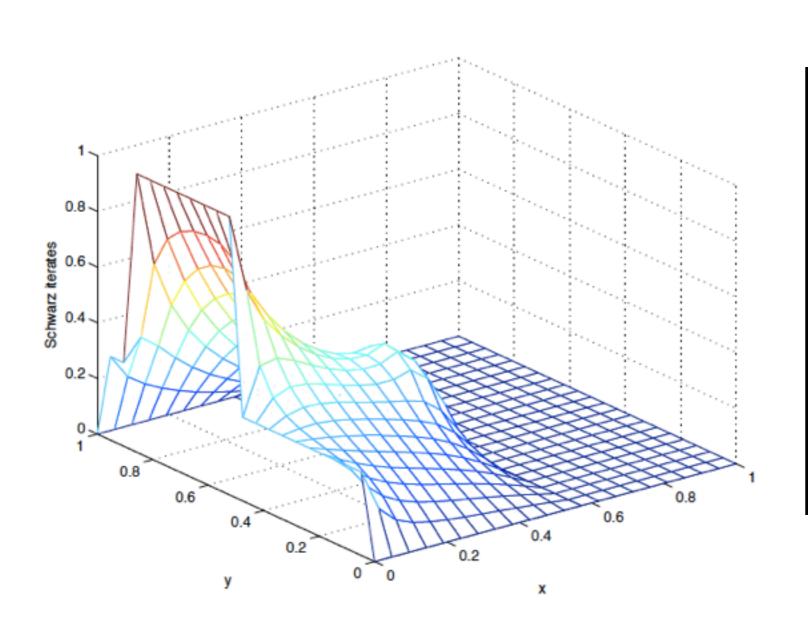


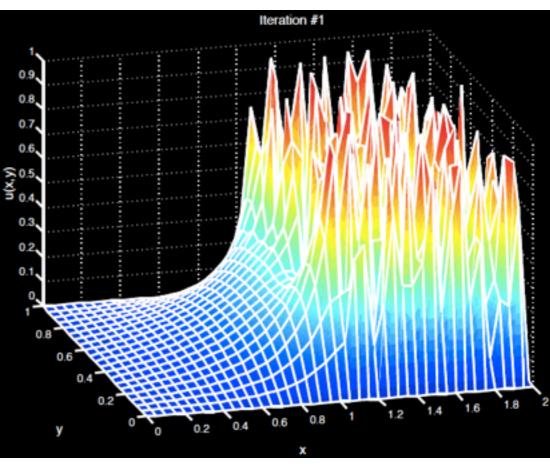
$$\begin{array}{lll} \Delta u_1^n = 0 & \text{in } \Omega_1 & \Delta u_2^n = 0 & \text{in } \Omega_2 \\ u_1^n = g & \text{on } \partial \Omega \cap \overline{\Omega}_1 & u_2^n = g & \text{on } \partial \Omega \cap \overline{\Omega}_2 \\ u_1^n = u_2^{n-1} & \text{on } \Gamma_1 & u_2^n = u_1^n & \text{on } \Gamma_2 \end{array}$$

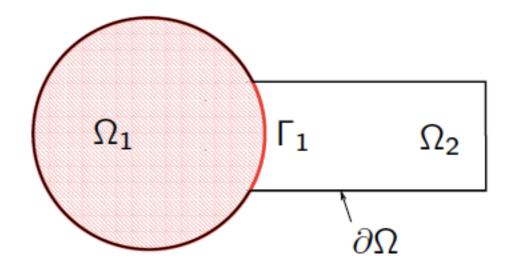
solve on the disk solve on the rectangle

Schwarz proved convergence in 1869 using the maximum principle.

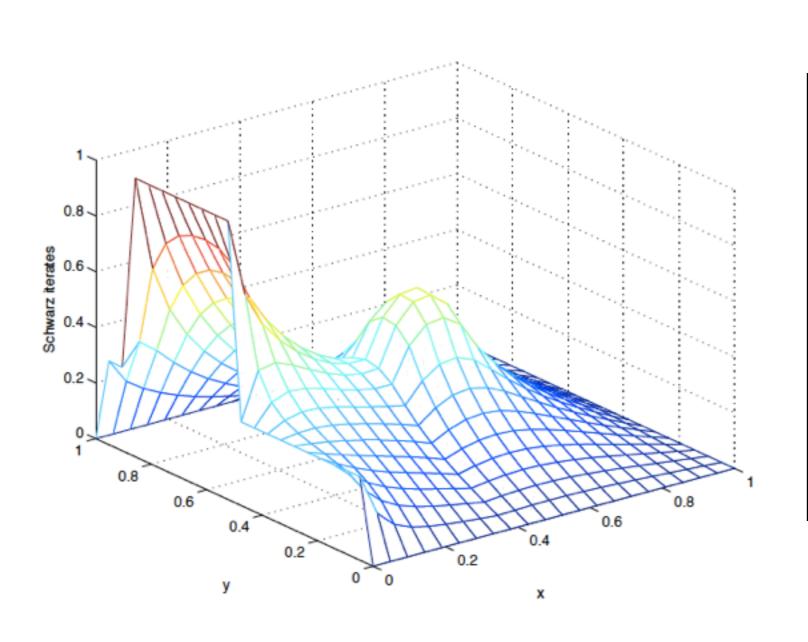
Iteration 1

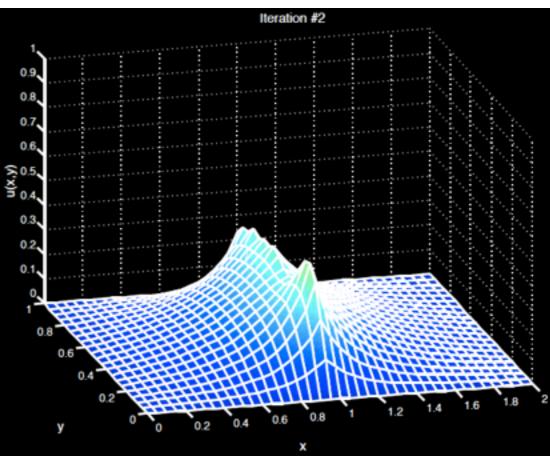


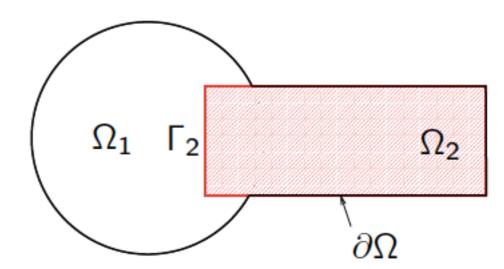




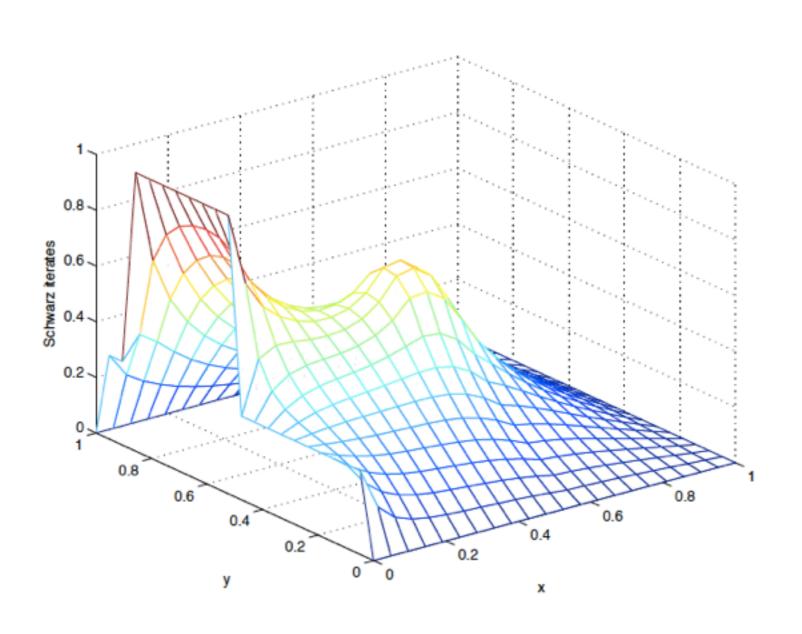
Iteration 2

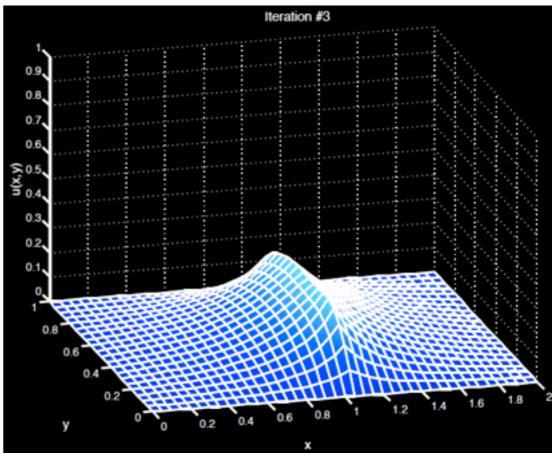


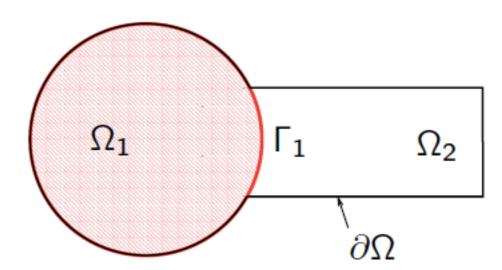




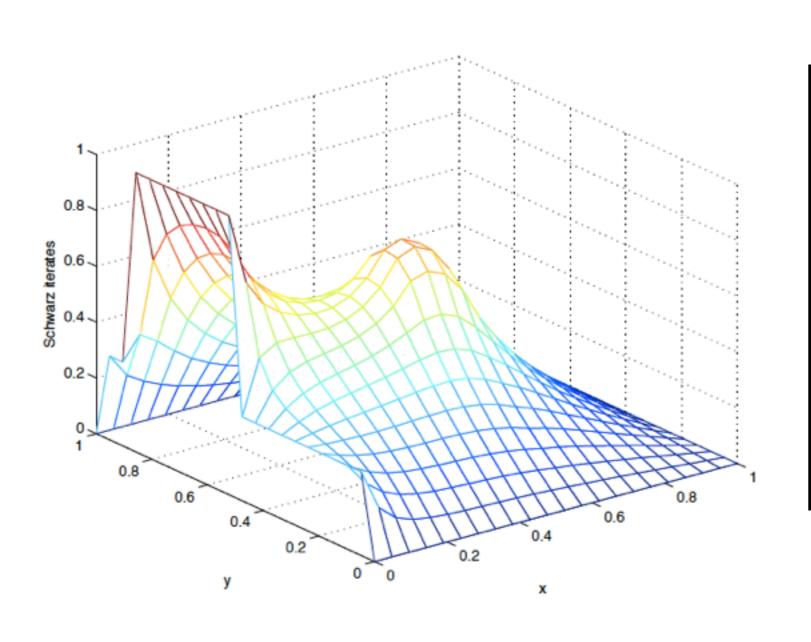
Iteration 3

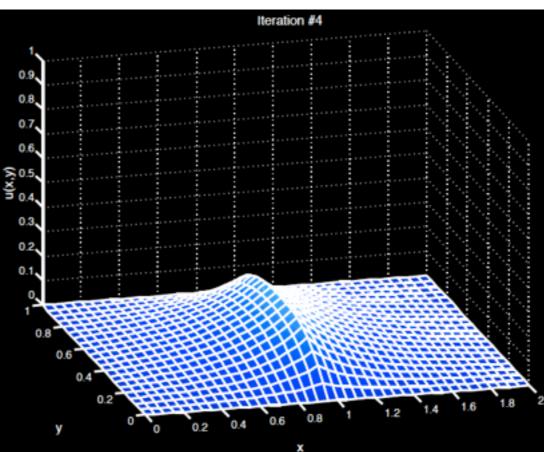


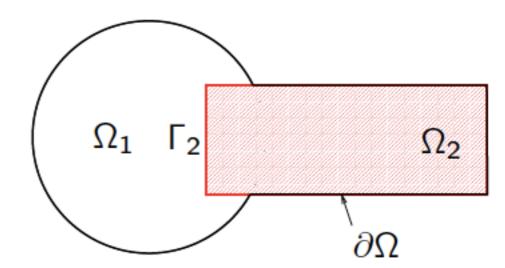




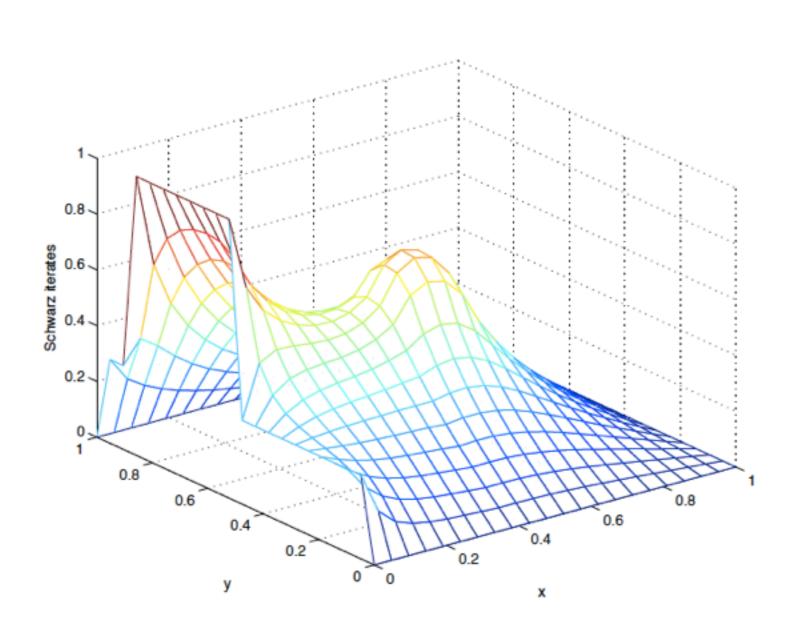
Iteration 5

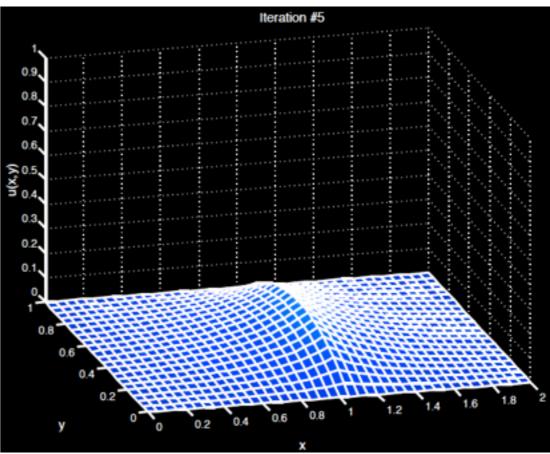


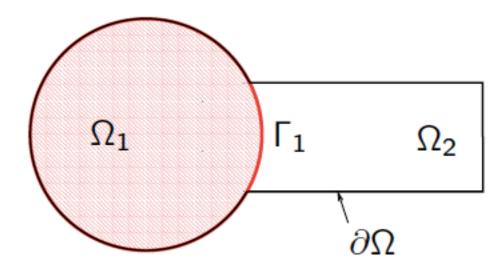




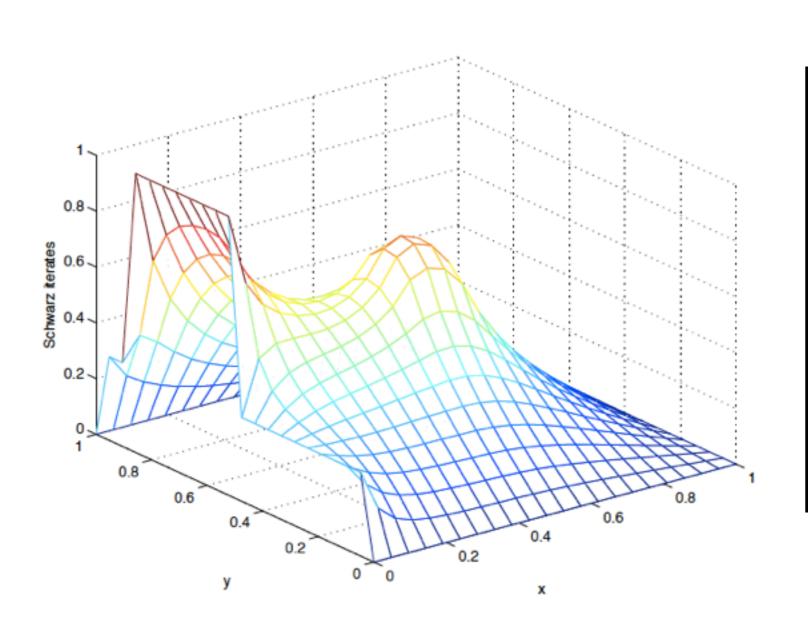
Iteration 4

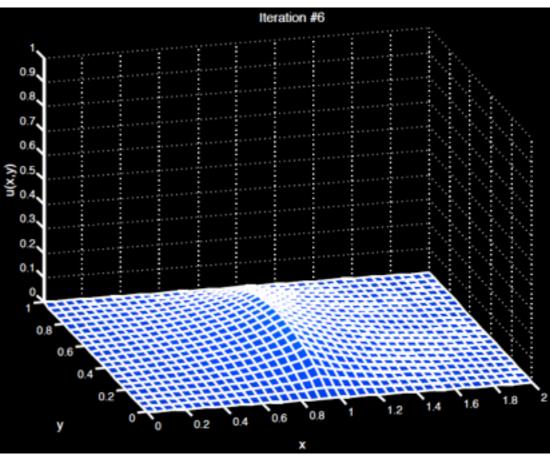


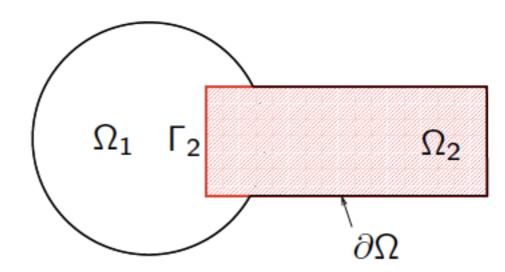




Iteration 6







Restriction Operator

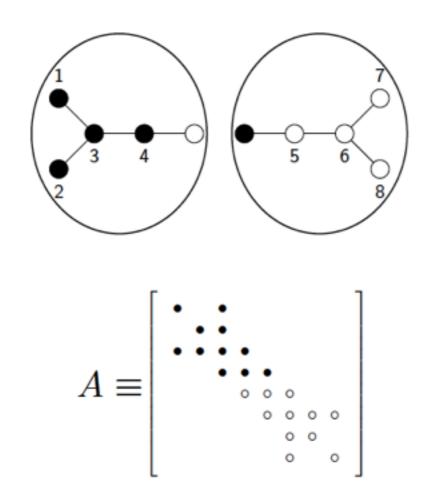
Subdomain operator

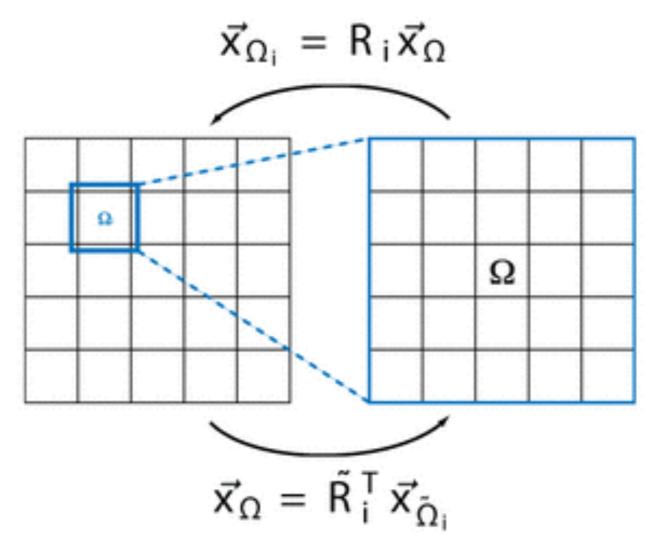
$$A_i = R_i^{\delta} A R_i^{\delta}$$

- ullet R_i^δ is the "restriction" operator (mapping to subdomain)
- Overlapping additive Schwarz preconditioner

$$M_{AS}^{-1} = \sum R_i^{\delta} A_i^{-1} R_i^{\delta}$$

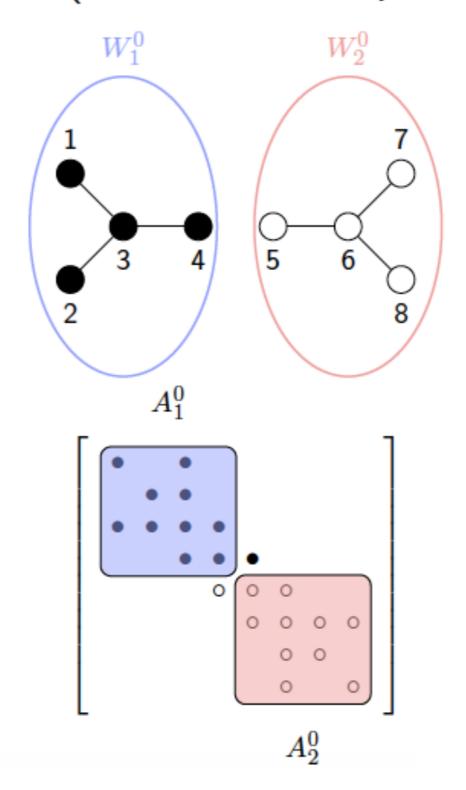
 \bullet A_i is not invertible but its restriction to the subspace is invertible





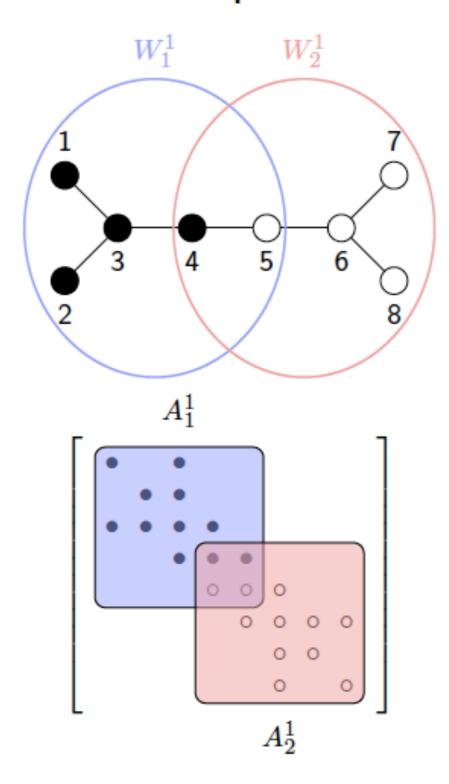
Non-overlapping Schwarz Methods

Overlap δ =0 (Block-Jacobi preconditioner)

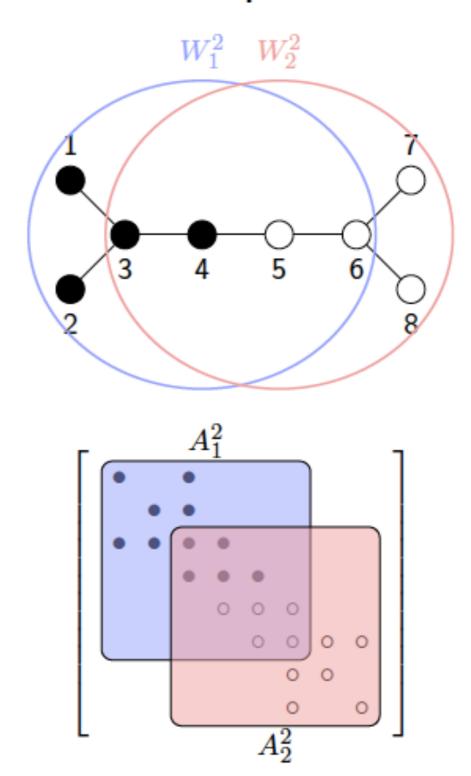


Overlapping Schwarz Methods

Overlap δ =1



Overlap δ =2



Additive & Multiplicative Schwarz Methods

Subdomain operator

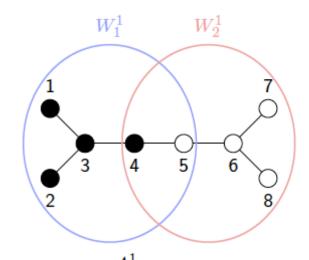
$$A_i = R_i^{\delta} A R_i^{\delta}$$

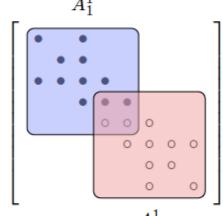
- R_i^{δ} is the "restriction" operator (mapping to subdomain)
- Overlapping additive Schwarz preconditioner

$$M_{AS}^{-1} = \sum R_i^{\delta} A_i^{-1} R_i^{\delta}$$

ullet A_i is not invertible but its restriction to the subspace is invertible

Overlap δ =1





Multiplicative Schwarz

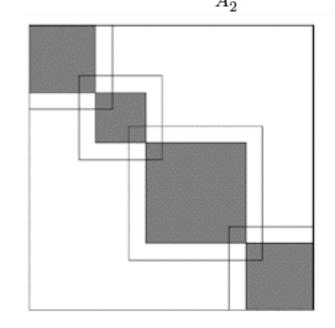
$$M^{-1} = \prod R_i^{\delta} A_i^{-1} R_i^{\delta}$$

Additive Schwarz

$$M^{-1} = \sum R_i^{\delta} A_i^{-1} R_i^{\delta}$$

Restricted Additive Schwarz

$$M^{-1} = \sum_{i} R_i^0 A_i^{-1} R_i^{\delta}$$



Additive & Multiplicative Schwarz Methods

	Overlap = 0			Overlap = 1				
$H \setminus h$	1/32	1/64	1/128	1/256	1/32	1/64	1/128	1/256
1/4	15	22	30	43	13	17	25	34
1/8	20	28	40	60	15	22	31	46
1/16	26	39	55	80	20	29	42	61
1/32	31	54	77	111	23	40	57	83
	Overlap = 1%			Overlap = 2%				
1/4	13	17	20	25	13	15	18	20
1/8	15	22	26	33	15	18	23	26
1/16	20	29	34	43	20	25	30	34
1/32	23	40	47	58	23	30	41	44

,					
05/09	Class 9	Dense direct solvers	Understand the principle of LU decomposition		
			and the optimization and parallelization techniques		
			that lead to the LINPACK benchmark.		
		Dense eigensolvers	Determine eigenvalues and eigenvectors		
05/12	Class 10		and understand the fast algorithms for		
			diagonalization and orthonormalization.		
05/16	Class 11	Sparse direct solvers	Understand reordering in AMD and nested		
			dissection, and fast algorithms such as		
			skyline and multifrontal methods.		
05/19	Class 12	Sparse iterative solvers	Understand the notion of positive definiteness,		
			condition number, and the difference between		
			Jacobi, CG, and GMRES.		
		Preconditioners	Understand how preconditioning affects the		
05/23	Class 13		condition number and spectral radius, and		
			how that affects the CG method.		
05/26	Class 14	Multigrid methods	Understand the role of smoothers, restriction,		
			and prolongation in the V-cycle.		
05/30	Class 15	Fast multipole methods, H-matrices	Understand the concept of multipole		
			expansion and low-rank approximation,		
			and the role of the tree structure.		
,					