05/09

05/12

05/16

05/19

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

Class 12

Sparse iterative solvers

Understand the notion of positive definiteness,

condition number, and the difference between
Jacobi, CG, and GMRES.

05/23

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

05/26

05/30

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.

|1AU]|

10

10

10

10

10

10-10

-12
10

10

107°

Preconditioning

- Jacobi

— SOR w=1.0
—— SOR w=1.9
—— Conjugate Gradient

- Preconditioned CG

100

200

300
lteration

400

500

Sparse iterative solvers

@ SCiPy.Org G ENTHOUGHT

Scipy.org SciPy v0.17.1 Reference Guide

Sparse linear algebra (scipy.sparse.linalg)

Solving linear problems

Direct methods for linear equation systems:

spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
factorized(A) Return a fuction for solving a sparse linear system, with A pre-factorized.
MatrixRankWarning

use_solver(**kwargs) Select default sparse direct solver to be used.

Iterative methods for linear equation systems:

bicg(A, b[, x0, tol, maxiter, xtype@..]) Use BlConjugate Gradient iteration to solve Ax=Db
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BlConjugate Gradient STABilized iteration to solve Ax=b
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iterationto solve Ax=b

cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration to solve Ax=b

gmres(A, b, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve A x = b.
Ilgmres(A, b[, x0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES algorithm.
minres(A, b[, x0, shift, tol, maxiter, ...]) Use MINimum RESidual iteration to solve Ax=b

gmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iterationtosolve Ax=Db

/ Solvers \ :EEE: Arz = b

Dense matrix Sparse matrix
GaussElimination Ilterative solver Direct solver
LU decomposition
Multifrontal
Supernodal
Stationary method Krylov subspace method
Jacobi CG BiCG BiCGSTAB

Gauss-Seidel GMRES MINRES

SOR

Norm and Condition Number

HXH _ zn: ‘X‘ Manhattan norm
! — ’ L1 norm

n Euclidean norm

|x[|2 = \ZX? Lo norm

Maximum norm
1<i<n L~ norm

AN

O

Norm and Condition Number

Schatten norm

Al = [pax Z |Aij |-norm
n n
|A]l2 = >4>4 A2 2-norm
\73 1 j=1
Infinity norm
1Al = 1133<an Aij|

Operator norm

A
4ll, = max (2l
225 Tl

Condition nhumber

cond(A) = ||A| [[A7}]

Norm and Condition Number

Condition humber

— Omax |>\maaz|
cond(A) = [|A]] |[A7}]] = =

N
if AA* = A*A

Spectral radius
p(A) = max |A;
1<i<n
The following lemma shows a simple yet useful upper bound for the spectral radius of a matrix:
Lemma. Let A € C"*” with spectral radius p(A4) and a consistent matrix norm ||*||; then, for each k£ € N:
e d
p(A) < ||A¥||%.
Proof. Let (v, A) be an eigenvector-eigenvalue pair for a matrix A. By the sub-multiplicative property of the matrix norm, we get:
k k k k
ANV = [[A"v]] = [[A%v] < A7 - (v
and since v # 0 we have
k k
Al < [|A7

and therefore

1
[)(fl) S Il.‘lk ” k, https://en.wikipedia.org/wiki/Spectral_radius

Convergence rate of Conjugate Gradient

T2

1
minimize f(x) = 5;1?7114;1? —blz
Optimal value . . 4 CRraE 2
f(z™) = —§bTA_1b = —§||;17*||34 2y /\) b
Suboptimality at 1 NN Y
f@) - =Sl — I3 N

Relative error measure

Convergence rate of Conjugate Gradient

Error after £ steps

o (%) € K) = span{b, Ab, A%b, ..., A*=1b}, so x(*) can be expressed as
k

k) = Z ;A = p(A)b
i=1

where p(\) = zk c; A\~ 1 is some polynomial of degree k& — 1 or less

i=1

e 2*) minimizes f(x) over K;; hence

: . . . | vy (12
Q(f(;r(’”)) — f*)= inf |[x —=z ||f2£1 — Inf ||(p(—l) — A l)b”A

=y N deg p<k

we now use the eigenvalue decomposition of A to bound this quantity

Convergence rate of Conjugate Gradient

e eigenvalue decomposition of A

i=1

e defined = QTb

expression on previous page simplifies to

2Af@®) =17 = inf[|(p(4) - A7}
o . | A1 2
= inf o) - Al
n , AN 2 72
_ e (Aip(A\;) — 1) d;
degp<kz,:1)\z'

=L q(\)2 d2

degq<k, q(0)=14= A

Convergence rate of Conjugate Gradient

Absolute error

IA

f®) - f* (Z

) inf (max q(/\i)g)
deg ¢<k, q(0)=1 \i=1,...,n
1

= '3, ind (max q(A»?)

deg g<k, q(0)=1

(equality follows from 3 d7 /A; = b"A™1b = [|2*%)

Relative error

(k) _ r*||2
T = |2 v < inf (max q(/\z-)2>

”l*”A deg g<k, q(0)=1

Convergence rate of Conjugate Gradient

Convergence rate and spectrum of A

if A has m distinct eigenvalues 1, ..., Ym, CG terminates in m steps:
—1\m
1) = (=) (A=)
Y1 Tm
satisfies degg = m, q(0) =1, g(\1) = - -+ = q(A\,,) = 0; therefore 1,,, = 0

if eigenvalues are clustered in m groups, then 7, is small

can find ¢(\) of degree m, with ¢(0) = 1, that is small on spectrum

if z* is a linear combination of m eigenvectors, CG terminates in m steps

take g of degree m with g(\;) = 0 where d; # 0; then

n 12 2
Z Q(/\;\) d; —0
i=1 t

Preconditioner

@ Main idea: Instead of solving
Ax = b
solve, using a nonsingular m X m preconditioner M,
M~ Az =M""b

which has the same solution z

o Convergence properties based on M~ A instead of A

@ Trade-off between the cost of applying M ~! and the
improvement of the convergence properties. Extreme cases:

o M = A, perfect conditioning of M~'A = I, but expensive
M—l

o M =1, “do nothing” M~! =1, but no improvement of
M-1A=A

http://persson.berkeley.edu/228A/Fall | 0/doc/lec4 | -2x3.pdf

Preconditioner
How to choose M 7

» M should be easy to invert
» M~! should be close to A™1

Given a stationary iterative method for Au = f,
Mu" = (M — Au" —f,
at convergence, the system
Mu=(M-Au—-f <= M1Au=MIf

Is solved. Hence every station-nary iterative method gives
raise to a preconditioner!

Example: Block Jacobi or Additive Schwarz without
algebraic overlap

A O uy 0 —Ap u? fy
n+1 — n T
0 A2 u, —A21 0 u, f2

Preconditioner

Does this Give a Good Preconditioner ?

The stationary iterative method
Mu" = (M — A" —f,

converges fast, if p(| — M~1A) << 1. This is equivalent to
saying that the spectrum of the preconditioned operator
M~1A is close to one. This implies, if the spectrum is real,

that \ iy
(lA) _ max() ~ 1.
mln(M A)
@
v Y
M~ 1Az =b AM~ 'y =ba =M1y
Left preconditioning Right preconditioning

Y

M AMG Yy = M7,z = M~y

Split preconditioning

Preconditioned Conjugate Gradient

o To keep symmetry, solve (C~1AC~*)C*xz = C~'b with
cCC* =M

@ Can be written in terms of M ! only, without reference to C:

Algorithm: Preconditioned Conjugate Gradients Method
xo=0,79g =0

po = M~ 1ry, 20 = po

forn=1,2,3,...
an = (T3_12n-1)/(Pp_14Pn—1) step length
Ty = Tn—1 + OnPn—1 approximate solution
Tn = Tn—1 — QnAPn_1 residual
2 = M1, preconditioning
Bn = (rrz,)/(rl_1z,_1) improvement this step

Dn = Zn + BnPn—1 search direction

http://persson.berkeley.edu/228A/Fall 1 0/doc/lec4 | -2x3.pdf

Various Preconditioners

A preconditioner should “approximately solve” the problem
Az = b

Jacobi preconditioning - M = diag(A), very simple and
cheap, might improve certain problems but usually insufficient
Block-Jacobi preconditioning - Use block-diagonal instead
of diagonal. Another variant is using several diagonals (e.g.
tridiagonal)

Classical iterative methods - Precondition by applying one
step of Jacobi, Gauss-Seidel, SOR, or SSOR

Incomplete factorizations - Perform Gaussian elimination
but ignore fill, results in approximate factors A ~ LU or

A~ RTR (more later)

Coarse-grid approximations - For a PDE discretized on a
grid, a preconditioner can be formed by transferring the
solution to a coarser grid, solving a smaller problem, then
transferring back (multigrid)

http://persson.berkeley.edu/228A/Fall 1 0/doc/lec4 | -2x3.pdf

Incomplete LU (Cholesky) factorization

Compute factors of A by Gaussian elimination, but ignore fill

Preconditioner B = RT R =~ A, not formed explicitly

Compute B~z by triangular solves in time O(nnz(A))

Total storage is O(nnz(A)), static data structure

Either symmetric (IC) or nonsymmetric (ILU)

http://persson.berkeley.edu/228A/Fall 1 0/doc/lec4 | -2x3.pdf

Incomplete LU (Cholesky) factorization

@ Allow one or more “levels of fill” * ., *; ,
o Unpredictable storage —>
requirements . ., : .,

e Allow fill whose magnitude exceeds a “drop tolerance”

e May get better approximate factors than levels of fill
e Unpredictable storage requirements
e Choice of tolerance is ad hoc

@ Partial pivoting (for nonsymmetric A)
e “Modified ILU" (MIC): Add dropped fill to diagonal of U (R)

o A and RT R have same row sums
e Good in some PDE contexts

http://persson.berkeley.edu/228A/Fall 1 0/doc/lec4 | -2x3.pdf

Incomplete LU (Cholesky) factorization

@ Choice of parameters

e Good: Smooth transition from iterative to direct methods

o Bad: Very ad hoc, problem-dependent

o Trade-off: Time per iteration vs # of iterations (more fill —
more time
but fewer iterations)

@ Effectiveness

o Condition number usually improves (only) by constant factor
(except MIC for some problems from PDEs)
o Still, often good when tuned for a particular class of problems

@ Parallelism

e T[riangular solves are not very parallel
e Reordering for parallel triangular solve by graph coloring

http://persson.berkeley.edu/228A/Fall 1 0/doc/lec4 | -2x3.pdf

Incomplete LU (Cholesky) factorization

@ Time to solve the Poisson model problem on regular mesh

with N nodes:
Solver 1-D 2-D 3-D
Sparse Cholesky O(N) O(N1-) O(N?)
CG, exact arith. O(N?) O(N?) O(N?)
CG, no precond. O(N?) O(N1) O(N1-39)
CG, modified IC O(N*) O(N1-25) O(N117)
Multigrid O(N) O(N) O(N)

http://persson.berkeley.edu/228A/Fall 1 0/doc/lec4 | -2x3.pdf

Domain Decomposition

Divide & conquer:

Solve large problem
by solving sequence of
local (smaller) problems

Applications:
@ lterative solver
@ Parallelization

@ Coupling different

discretizations
(BEM, FEM, IGA?)

@ Multi physics

Courtesy of Charbel Farhat

http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-IGAA.pdf

Domain Decomposition

Decomposition of)

Let us decompose (2 in two subdomains:

-~

without overlap

with overlap

Alternating Schwarz Method

Hermann Amandus
Schwarz

1843 — 1921

Schwarz’s alternating method:

u'® = given, satisfying B.C.

— AU~ f in Q
y1/e) urt1/2) - = M on oQ!
urt1/2) =y onQ\ Q
— AU = f in Q5
u(n+1) : u(n+1) _ u(n+1/2) on 39/2
U 2 on)\ Q)

http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-IGAA.pdf

Alternating Schwarz Method

Hermann Amandus
Schwarz
1843 — 1921

Schwarz’s alternating method:

u'® = given, satisfying B.C.

— AU~ f in Q
y(n+1/2) . yn+1/2) — 40 on 194
urt1/2) = uM on Q\ Q]
— AU = f in Q5
T utm) = (12 on 90,
U(n+1) _ u(n+1/2) on O \ Qé

http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-IGAA.pdf

Alternating Schwarz Method

Schwarz invents a method to proof that the infimum is
attained: for a general domain €2 := 7 U {25:

Ql [5 > rl Q2
\
9,9
Aui =0 in {23 Auy =0 in (2
uy = g on 92 N ul =g on QN Qy
ul = u)~" on T 7 =uf on [
solve on the disk solve on the rectangle

» Schwarz proved convergence in 1869 using the
maximum principle.

Alternating Schwarz Method

lteration 1

1

o
@
z
"/
[—7 |
1
L/
——7
/

o
(o3}
/

Schwarz terates
o
N
Vi
)

i
/

02" ~_|

Alternating Schwarz Method

lteration 2

Error

llerabon #2

0.8 \ .
AR\ ¢
AR

06\ | Y

0.4 |

Schwarz teraes

0.2

OS2

Alternating Schwarz Method

lteration 3
Error
Iteration #3
1\ .
f\\"‘\-é_ "
os | \\\ty
AR
® | \ >\3
$osl |
3 ,'

Alternating Schwarz Method

lteration 5
Error

lteration #4

14

’\“g i\\\ a
08 N |
\

Schwarz terates

S

-
e e e i e e,
-

A\ Y
‘\“‘\\“\“““‘ -
““\‘\\“‘--‘-- -

lteration 4

L

0.8
<
% 0.6
2
S
2 044
&

0.2

Alternating Schwarz Method

Error

lteration #5

o0 - -
““‘\“‘\‘\““‘: Soce OO
“““““ B e

O - -
-
.-“‘-.c- - - wmaen

Alternating Schwarz Method

lteration 6

lteration #6

1

0.8

Schwarz terates

Restriction Operator

@ Subdomain operator

A; = ROARY

) Rf Is the “restriction” operator (mapping to subdomain)

@ Overlapping additive Schwarz preconditioner

r— 0 A—1pd
Myg=> RJA7'R;

@ A; is not invertible but its restriction to the subspace is invertible

%o, = RiXo

-
-
-

- -

Q

A=| *i:. h
© 000 \ /
o o - __ pl =
xQ_Ri 0,

Non-overlapping Schwarz Methods

Overlap =0 (Block-Jacobi preconditioner)

1 7
:3 4 5 G;C:
2 8
A]
(o o
o o
e o o o
© oo
ofo o 1
O 0 0 O
0O O
0 o |

Overlapping Schwarz Methods

2

Overlap 0

Overlap 0=1

O O O O
N

® & o o
r

Additive & Multiplicative Schwarz Methods

@ Subdomain operator

A; = ROARY

o Rf is the “restriction” operator (mapping to subdomain)

@ Overlapping additive Schwarz preconditioner

r—1 0 A—1pd
Mys=> RJA7'R;

@ A, is not invertible but its restriction to the su

bspace is invertible

Multiplicative Schwarz M-l — H R?Ai_le

Additive Schwarz M—l _ Z R? Az’_l R?

Restricted Additive Schwarz M~ ! = Z R,? A;l ng

Overlap 0=1

1
"o
2

7

O

4 5 6
8

Aj

Additive & Multiplicative Schwarz Methods

Overlap = 0 Overlap =1
H\h | 1/32 1/64 1/128 1/256 | 1/32 1/64 1/128 1/256
1/4 15 22 30 43 13 17 25 34
1/8 20 28 40 60 15 22 31 46
1/16 26 39 55 80 20 29 42 61
1/32 31 54 77 111 23 40 57 83
Overlap = 1% Overlap = 2%
1/4 13 17 20 25 13 15 18 20
1/8 15 22 26 33 15 18 23 26
1/16 20 29 34 43 20 25 30 34
1/32 23 40 47 58 23 30 41 44

05/09

05/12

05/16

05/19

05/23

Class 9

Dense direct solvers

Understand the principle of LU decomposition

and the optimization and parallelization techniques
that lead to the LINPACK benchmark.

Class 10

Dense eigensolvers

Determine eigenvalues and eigenvectors
and understand the fast algorithms for

diagonalization and orthonormalization.

Class 11

Sparse direct solvers

Understand reordering in AMD and nested
dissection, and fast algorithms such as
skyline and multifrontal methods.

Class 12

Sparse iterative solvers

Understand the notion of positive definiteness,

condition number, and the difference between
Jacobi, CG, and GMRES.

Class 13

Preconditioners

Understand how preconditioning affects the
condition number and spectral radius, and
how that affects the CG method.

05/26

Class 14

Multigrid methods

Understand the role of smoothers, restriction,

and prolongation in the V-cycle.

05/30

Class 15

Fast multipole methods, H-matrices

Understand the concept of multipole
expansion and low-rank approximation,
and the role of the tree structure.

