		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
	Class 4	Spectral methods	Explain the advantages of orthogonal
04/18	Class 4		basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
	Class 5	Boundary element methods	Understand the relation between inverse
04/21	Class 5		matrices, δ functions and Green's functions,
			and solve boundary integral equations.
	Class 6	Molecular dynamics	Understand the significance of symplectic
04/25	Class 0		time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
		Particle mesh methods	How to conserve higher order moments for
05/02	Class 8		interpolations schemes when both particle and
			mesh-based discretizations are used.

Particle-based discretization

Gradients

$$\nabla u(\mathbf{x}) = \nabla \sum_{j} u_{j} \frac{m_{j}}{\rho_{j}} W(\mathbf{x} - \mathbf{x}_{j})$$

$$= \sum_{j} u_{j} \frac{m_{j}}{\rho_{j}} \nabla W(\mathbf{x} - \mathbf{x}_{j})$$

$$\nabla^2 u(\mathbf{x}) = \nabla^2 \sum_j u_j \frac{m_j}{\rho_j} W(\mathbf{x} - \mathbf{x}_j)$$
$$= \sum_j u_j \frac{m_j}{\rho_j} \nabla^2 W(\mathbf{x} - \mathbf{x}_j)$$

Compact support functions

Neighbor search

Navier-Stokes in Lagrangian frame

Eulerian Lagrangian

$$\frac{Du_i}{Dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 u_i$$

Pressure

$$\frac{Du_i}{Dt} = \left(-\frac{1}{\rho_i}\nabla p_i\right) + \nu \nabla^2 u_i$$

$$u_i = \sum_j u_j \frac{m_j}{\rho_j} W(\mathbf{x}_i - \mathbf{x}_j)$$

$$-\frac{1}{\rho_i}\nabla p_i = -\sum_{j}^{\mathbf{v}} p_j \frac{m_j}{\rho_i \rho_j} \nabla W(\mathbf{x}_i - \mathbf{x}_j)$$

$$pV = nRT = k V = \frac{1}{\mu}$$

$$p_i = k\rho_i$$

Density

$$u_i = \sum_j u_j \frac{m_j}{\rho_j} W(\mathbf{x}_i - \mathbf{x}_j)$$

$$\rho_i = \sum_{j} \rho_j \frac{m_j}{\rho_j} W(\mathbf{x}_i - \mathbf{x}_j)$$

$$= \sum_{j} m_j W(\mathbf{x}_i - \mathbf{x}_j)$$

(density) = weighted ambient point mass

Viscosity

$$\frac{Du_i}{Dt} = -\frac{1}{\rho_i} \nabla p_i + \boxed{\nu \nabla^2 u_i}$$

$$\nabla^2 u_i = \sum_j u_j \frac{m_j}{\rho_j} \nabla^2 W(\mathbf{x}_i - \mathbf{x}_j)$$

$$\nu \nabla^2 u_i = \mu \sum_j u_j \frac{m_j}{\rho_i \rho_j} \nabla^2 W(\mathbf{x}_i - \mathbf{x}_j)$$

Verlet integration

$$\frac{Du_i}{Dt} = -\frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 u_i$$

x: position

$$u = \frac{Dx}{Dt}$$
: velocity

$$\frac{Du}{Dt} = \frac{D^2x}{Dt^2}$$
: acceleration

$$x(t + \Delta t) = 2x(t) - x(t - \Delta t) + \frac{d^2x}{dt^2}(t)\Delta t^2 + \mathcal{O}(\Delta t^4)$$

Gravity

$$\frac{Du_i}{Dt} = -\frac{1}{\rho_i} \nabla p_i + g_i$$

		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
04/21	Class 5	Boundary element methods	Understand the relation between inverse
			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
04/25	Class 6	Molecular dynamics	Understand the significance of symplectic
			time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
		Particle mesh methods	How to conserve higher order moments for
05/02	Class 8		interpolations schemes when both particle and
			mesh-based discretizations are used.