Course schedule Required learning

Discretizing differential equations Discretize differential equations using forward,
04/07 @ Class 1 backward, and central difference, with high order,

and evaluate the discretization error

Finite difference methods Understand stability of low and high order
04/]| @ Class 2 time integration, and use it to solve
convection, diffusion, and wave equations

Finite element methods Understand the concepts of Galerkin methods,
04/14 | Class 3 test functions, isoparametric elements, and

use it to solve elasticity equations.

Class 4 Spectral methods Explain the advantages of orthogonal

ass

04/18 basis functions such as Fourier, Chebyshev,
Legendre, and Bessel.

Boundary element methods Understand the relation between inverse
Class 5 . . :
04/2 1 matrices, § functions and Green’s functions,
and solve boundary integral equations.

Molecular dynamics Understand the significance of symplectic
Class 6 o
04/25 time integrators and thermostats, and solve

the dynamics of interacting molecules.

Smooth particle hydrodynamics (SPH) | Evaluate the conservation and dissipation

Class 7
04/28 s properties of differential operators formed
from radial basis functions.

Particle mesh methods How to conserve higher order moments for
05/02 | Class 8 interpolations schemes when both particle and

mesh-based discretizations are used.
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Weighted residual method
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Weak form
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Integration by parts
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Inverse form
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Green’s function
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Boundary condition
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Discretization
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High order elements
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Triple loop
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Final matrix form
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Course schedule

Required learning

Class 1

Discretizing differential equations

Discretize differential equations using forward,
backward, and central difference, with high order,

and evaluate the discretization error

Class 2

Finite difference methods

Understand stability of low and high order
time integration, and use it to solve

convection, diffusion, and wave equations

Class 3

Finite element methods

Understand the concepts of Galerkin methods,
test functions, isoparametric elements, and

use it to solve elasticity equations.

Class 4

Spectral methods

Explain the advantages of orthogonal
basis functions such as Fourier, Chebyshev,
Legendre, and Bessel.

Class 5

Boundary element methods

Understand the relation between inverse

matrices, § functions and Green’s functions,

and solve boundary integral equations.

04/25

Class 6

Molecular dynamics

Understand the significance of symplectic
time integrators and thermostats, and solve

the dynamics of interacting molecules.

04/28

05/02

Class 7

Smooth particle hydrodynamics (SPH)

Evaluate the conservation and dissipation

properties of differential operators formed
from radial basis functions.

Class 8

Particle mesh methods

How to conserve higher order moments for
interpolations schemes when both particle and

mesh-based discretizations are used.




