		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
04/21	Class 5	Boundary element methods	Understand the relation between inverse
			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
04/25	Class 6	Molecular dynamics	Understand the significance of symplectic
			time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
05/02	Class 8	Particle mesh methods	How to conserve higher order moments for
			interpolations schemes when both particle and
			mesh-based discretizations are used.

Linear spring

$$\begin{array}{c}
u_2 & u_1 \\
 & \downarrow \\
f_2 & f_1
\end{array}$$

$$\begin{bmatrix} u_2 & k_{12} & u_1 \\ -k_{12} & k_{12} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$-k_{23}u_2 = f_3$$

Matrix form

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} k_{12} \\ u_1 & u_2 & u_3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} k_{12} \\ u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} k_{12} & -k_{12} & 0 \\ -k_{12} & k_{12} + k_{23} & -k_{23} \\ 0 & -k_{23} & k_{23} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

Ku = f

$$A^T = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

$$C = \begin{bmatrix} k_{12} & 0 \\ 0 & k_{23} \end{bmatrix}$$

$$A^T C A = K$$

Analytical form

$$u:$$
 displacement

$$\epsilon = Au = \frac{\partial u}{\partial x}$$

$$\sigma = C\epsilon$$

$$f = A^{T} \sigma = -\frac{\partial \sigma}{\partial x}$$

 ϵ : strain

 σ : internal stress

f: force

Basis (trial) functions

$$u(x) = u_1\phi_1(x) + u_2\phi_2(x) + u_3\phi_3(x)$$

$$-\frac{\partial}{\partial x} \left(c \frac{\partial u}{\partial x} \right) = f \longrightarrow \sum_{i=1}^{3} -\frac{\partial}{\partial x} \left(c \frac{\partial \phi_i}{\partial x} \right) u_i = f$$

$$\iota_3$$
 k

$$-\frac{\partial}{\partial x} \left(c \frac{\partial u}{\partial x} \right) = f$$

$$-\frac{\partial}{\partial x} \left(c \frac{\partial \tilde{u}}{\partial x} \right) \approx f$$

$$-\frac{\partial}{\partial x} \left(c \frac{\partial \tilde{u}}{\partial x} \right) - f = r$$

$$\int_0^2 r dx = 0$$

Weighted residual method

$$\int_0^2 rw = 0$$

$$\int_{0}^{2} r^{2} = 0$$

$$\int_0^2 r^2 w = 0$$

$$\int_0^2 \left(-\frac{\partial}{\partial x} \left(c \frac{\partial \tilde{u}}{\partial x} \right) - f \right) w dx = 0$$

$$\int_0^2 -\frac{\partial}{\partial x} \left(c \frac{\partial \tilde{u}}{\partial x} \right) w dx = \int_0^2 f w dx$$

Integration by parts

$$\int_{0}^{2} -\frac{\partial}{\partial x} \left(c \frac{\partial \tilde{u}}{\partial x} \right) w dx = \int_{0}^{2} fw dx$$

$$\int_{0}^{2} -\frac{\partial}{\partial x} \left(c \frac{\partial \tilde{u}}{\partial x} \right) w dx = \int_{0}^{2} c \frac{\partial \tilde{u}}{\partial x} \frac{\partial w}{\partial x} dx - \left[c \frac{\partial \tilde{u}}{\partial x} w \right]_{0}^{2}$$

Boundary conditions

$$\frac{w(0) = 0}{\partial x} = 0$$

Galerkin method

$$\int_0^2 c \frac{\partial \tilde{u}}{\partial x} \frac{\partial w}{\partial x} dx = \int_0^2 fw dx$$

$$w(x) = w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x) \qquad w_1 = w_2 = w_3 = 1$$

$$w(x) = w_1(x) + w_2(x) + w_3(x)$$

$$\sum_{j=1}^{3} \int_{0}^{2} c \frac{\partial \tilde{u}}{\partial x} \frac{\partial w_{j}}{\partial x} dx = \sum_{j=1}^{3} \int_{0}^{2} f w_{j} dx$$

Final discrete form

$$\sum_{j=1}^{3} \int_{0}^{2} c \frac{\partial \tilde{u}}{\partial x} \frac{\partial w_{j}}{\partial x} dx = \sum_{j=1}^{3} \int_{0}^{2} f w_{j} dx \qquad \frac{\partial \tilde{u}}{\partial x} = \sum_{i=1}^{3} \frac{\partial \phi_{i}}{\partial x} u_{i}$$

$$\sum_{i,j=1}^{3} \int_{0}^{2} c \frac{\partial \phi_{i}}{\partial x} \frac{\partial w_{j}}{\partial x} u_{i} dx = \sum_{j=1}^{3} \int_{0}^{2} f w_{j} dx$$

$$K_{ij} = \int_0^2 c \frac{\partial \phi_i}{\partial x} \frac{\partial w_j}{\partial x} \qquad f_j = \int_0^2 f w_j dx$$

$$K \quad u = f$$

$$\begin{bmatrix} k_{12} & -k_{12} & 0 \\ -k_{12} & k_{12} + k_{23} & -k_{23} \\ 0 & -k_{23} & k_{23} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

Elementwise calculation

$$\begin{array}{cccc}
 & k_{12} & u_1 \\
 & \downarrow & \downarrow \\
 & f_2 & f_1
\end{array}
\qquad
\begin{bmatrix}
 & k_{12} & -k_{12} \\
 & -k_{12} & k_{12}
\end{bmatrix}
\begin{bmatrix}
 & u_1 \\
 & u_2
\end{bmatrix} = \begin{bmatrix}
 & f_1 \\
 & f_2
\end{bmatrix}$$

2-D FEM

Assembling the matrix K

$$F_i^{(e)} = \int_{\Omega_e} \phi_i Q(x, y) dx dy - \oint_{\Gamma_e} \phi_i q_n ds = \sum_{j=1}^{n_e} K_{ij}^{(e)} T_j^{(e)}$$

$$U_1 = T_1^{(1)}, U_2 = T_2^{(1)} + T_1^{(2)}, U_3 = T_3^{(1)} + T_4^{(2)}, U_4 = T_2^{(2)}, U_5 = T_3^{(2)},$$

Global
$$\rightarrow$$
 Local

 K_{11} $K_{11}^{(1)}$
 K_{12} $K_{12}^{(1)}$
 K_{22} $K_{22}^{(1)} + K_{11}^{(2)}$
 K_{14} 0
 K_{15} 0
 K_{23} $K_{23}^{(1)} + K_{14}^{(2)}$

$$\begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & K_{13}^{(1)} & 0 & 0 \\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & K_{23}^{(1)} + K_{14}^{(2)} & K_{12}^{(2)} & K_{13}^{(2)} \\ K_{31}^{(1)} & K_{32}^{(1)} + K_{41}^{(2)} & K_{33}^{(1)} + K_{44}^{(2)} & K_{42}^{(2)} & K_{43}^{(2)} \\ 0 & K_{21}^{(2)} & K_{24}^{(2)} & K_{22}^{(2)} & K_{23}^{(2)} \\ 0 & K_{31}^{(2)} & K_{34}^{(2)} & K_{32}^{(2)} & K_{33}^{(2)} \end{bmatrix}$$

$$\begin{array}{c|c}
U_1 \\
U_2 \\
U_3 \\
U_4 \\
U_5
\end{array} = \begin{pmatrix}
F_1^{(1)} \\
F_2^{(1)} + F_1^{(2)} \\
F_3^{(1)} + F_4^{(2)} \\
F_3^{(2)} \\
F_3^{(2)}
\end{array}$$

		Course schedule	Required learning
		Discretizing differential equations	Discretize differential equations using forward,
04/07	Class 1		backward, and central difference, with high order,
			and evaluate the discretization error
		Finite difference methods	Understand stability of low and high order
04/11	Class 2		time integration, and use it to solve
			convection, diffusion, and wave equations
		Finite element methods	Understand the concepts of Galerkin methods,
04/14	Class 3		test functions, isoparametric elements, and
			use it to solve elasticity equations.
04/18	Class 4	Spectral methods	Explain the advantages of orthogonal
			basis functions such as Fourier, Chebyshev,
			Legendre, and Bessel.
04/21	Class 5	Boundary element methods	Understand the relation between inverse
			matrices, δ functions and Green's functions,
			and solve boundary integral equations.
04/25	Class 6	Molecular dynamics	Understand the significance of symplectic
			time integrators and thermostats, and solve
			the dynamics of interacting molecules.
04/28	Class 7	Smooth particle hydrodynamics (SPH)	Evaluate the conservation and dissipation
			properties of differential operators formed
			from radial basis functions.
05/02	Class 8	Particle mesh methods	How to conserve higher order moments for
			interpolations schemes when both particle and
			mesh-based discretizations are used.