2016 年 9 月 29 日 山田光太郎

kotaro@math.titech.ac.jp

幾何学概論第一(MTH.B211)講義資料 1

講義概要

重要なポインタ

• http://www.math.titech.ac.jp/~kotaro/class/2016/geom-1/

(この授業の公式ページ)

• http://www.official.kotaroy.com/class/2016/geom-1/

(この授業のページ; ミラーサイト)

• http://www.ocw.titech.ac.jp/

(東工大 OCW)

● 本館 2 階 231

(山田の部屋;提出物ポストはここ)

科目名など 幾何学概論第一 (MTH.B211) (木曜日・3/4 時限・理学部数学科)

担当者 山田光太郎(理学院数学系)kotaro@math.titech.ac.jp

講義の概要 線形代数学,微分積分学から必要な事項を整理したのち,以下の事項を学ぶ:平面曲線のパラメータ表示・弧長・曲率・曲率の幾何学的意味・フルネの公式・平面曲線の基本定理・空間曲線の曲率と捩率・空間曲線の基本定理.平面・空間曲線の微分幾何学の基本事項を通して,これまでに学んだ線形代数学・微分積分学が使われる場面を体験し、変換・不変量といった現代幾何学の基本的な概念を知る.

到達目標 平面曲線、空間曲線の微分幾何学の基本的な事項を学ぶ.(1) 曲線の曲率や捩率を合同変換やパラメータ変換で不変な量としてとらえ、それが曲線を決定すること (曲線論の基本定理) を理解する.(2) 閉曲線の位相幾何学的な性質と曲率の関係を通して、局所的な概念と大域的な概念の違いを知る.(3) これらの理論を具体例の計算によって確認する.本講義は直後に開講される「幾何学概論第二」に続くものである.

教科書 梅原雅顕・山田光太郎『曲線と曲面』改訂版(裳華房)

正誤表:http://www.math.titech.ac.jp/~kotaro/publication/surface-jp.html

成績評価の方法

- 別紙授業日程にある定期試験を受験することが単位を得るための必要条件です. (十分条件ではありません). やむを得ない理由で試験を受けられない方は(可能な限り)事前に電子メイルにて講義担当者までご連絡ください. 連絡なしに試験に欠席した方は,原則として単位を得る権利を失います.
- 成績は主として定期試験の得点で決めます.定期試験の成績が余りよくない場合(とくに定期試験だけでは不合格になってしまう場合)に以下の「提出物」の成績を考慮します.
- 授業が行われた後に
 - 講義資料にあげた問題の解答 (2点)
 - 前回までの授業内容に対する質問あるいは講義・講義資料の誤りの指摘 (3 点)

を提出してください.これを1回5点満点で評価します.

提出方法 所定の用紙に記入し,授業の翌日 金曜日の 13 時 00 分までに山田の部屋(本館 2 階 231) の前のポストに提出してください.整理の都合上,所定の用紙と異なる形式のものは受け付けません.

- 注意 いただいた質問にはできる限り回答します.なお,質問および回答の内容は公開しますのでご了承下さい.とくに質問の文章はできる限り原文を尊重しますので,誤字に気をつけてください. おまけ 提出用紙には授業に関する感想,意見の記入欄を設けます.いただいた御意見は個人が特定できない形で公開いたします.なお,ご意見等の内容は成績に一切影響いたしません.
- いわゆる出席点はつけません.したがって出席もとりません.しかし,出席と関わりなく 授業時間中に連絡したことは伝わっている とみなします.いかなる理由であろうとも,欠席された方は,その授業時間で何がなされたか,という情報をを次の回までに仕入れておいてください.
- 定期試験後,答案を返却し,成績を確認していただきます.採点,成績に関するクレイム・質問は期間を限って受け付けます.日程は,試験の際にお知らせ致します.なお,成績に関する議論は,提出されたもの(答案・質問)に書かれていることのみを材料とします.

授業日程

2016年9月29日現在

		授業内容	
09月29日	1	準備	
10月06日	2	平面曲線 (§1)	
10月13日	3	曲率とフルネ方程式 (§2)	
10月20日	4	閉曲線と回転数 (§3)	
10月27日	休	1	休講
11月03日	5	空間曲線 (§5)	文化の日
11月10日	6	空間曲線の基本定理 (§5)	
11月17日	試	定期試験	
11月24日	7	定期試験返却とコメント(補講日)	

● 11月3日は,祝日ですが授業を行います.交通機関の休日ダイヤにご注意ください.

1 準備

内積 この講義では \mathbb{R}^n (n=2,3) に標準的な内積 "·" が与えられているとする.ベクトル $v,w\in\mathbb{R}^n$ を列ベクトルと見なしたとき $v\cdot w={}^tvw$ である.ただし右辺の tv は v の転置を表し,右辺の積は行列の積を表す.これを用いて,ベクトル v の大きさを $|v|=\sqrt{v\cdot v}$ と定める.また, \mathbb{R}^n の 2 点 P,Q の距離を $d(P,Q)=|\overrightarrow{PQ}|=|\overrightarrow{OQ}-\overrightarrow{OP}|$ で定める.ただし O は座標原点である.

直交行列 実数を成分とする n 次正方行列 A が直交行列である,とは ${}^tAA=A^tA=I(=n$ 次単位行列)が成り立つことである.

問 1.1. 次数 n の 実正方行列 A が直交行列であることと,次の各々は同値であることを示しなさい:

- 任意のベクトル $v, w \in \mathbb{R}^n$ に対して $(Av) \cdot (Aw) = v \cdot w$.
- ullet 任意のベクトル $oldsymbol{v} \in \mathbb{R}^n$ に対して $|Aoldsymbol{v}| = |oldsymbol{v}|.$
- \bullet A の n 個の列ベクトルが \mathbb{R}^n の正規直交基をなす.

問 1.2. ● 直交行列の行列式の値は 1 または -1 であることを示しなさい .

- \bullet n 次直交行列全体の集合は行列の積に関して群をなすことを示しなさい.この群を O(n) と書く.
- ullet n 次直交行列のうち行列式が 1 であるものの全体 $\mathrm{SO}(n)$ は $\mathrm{O}(n)$ の部分群であることを示しなさい .
- \bullet $\mathrm{SO}(n)$ は $\mathrm{O}(n)$ の指数 2 の部分群であることを示しなさい .

問 ${f 1.3.}$ 実数を成分とする n 次正方行列全体の集合 ${
m M}(n,\mathbb{R})$ を \mathbb{R}^{n^2} と同一視し,通常の位相を入れておく.

- ullet $\mathrm{O}(n)\subset\mathrm{M}(n,\mathbb{R})$ は閉集合であることを示しなさい .
- $SO(n) \subset M(n,\mathbb{R})$ は閉集合か.
- ullet $\mathrm{O}(n)\subset\mathrm{M}(n,\mathbb{R})$ は連結でないことを示しなさい .
- ullet $\mathrm{SO}(n)\subset\mathrm{M}(n,\mathbb{R})$ は連結であることを示しなさい .
- ullet $\mathrm{O}(n)\subset\mathrm{M}(n,\mathbb{R})$ はコンパクトであることを示しなさい .
- $SO(n) \subset M(n, \mathbb{R})$ はコンパクトか.

等長変換 写像 $f\colon \mathbb{R}^n \to \mathbb{R}^n$ が等長変換であるとは , 任意の $P,Q \in \mathbb{R}^n$ に対して

$$d(f(P), f(Q)) = d(P, Q)$$

が成り立つことである.

問 1.4. ベクトル x を \mathbb{R}^n の点 (原点を起点とする位置ベクトル)とみなすとき ,

$$(1.1) f: \mathbb{R}^n \ni \boldsymbol{x} \longmapsto A\boldsymbol{x} + \boldsymbol{b} \in \mathbb{R}^n (A \in \mathcal{O}(n), \boldsymbol{b} \in \mathbb{R}^n)$$

であたえられる f は \mathbb{R}^n の等長変換である.このことを示しなさい.

定理 1.5. \mathbb{R}^n の等長変換は (1.1) の形に限る.

定義 ${\bf 1.6.}\ \mathbb{R}^n$ の等長変換を合同変換ということもある.とくに(1.1) の形をした合同変換のうち $A\in \mathrm{SO}(n)$ となるものを向きを保つ合同変換,そうでないものを 向きを反転する合同変換という.

多変数関数の微分法 ユークリッド空間 \mathbb{R}^m の領域 (連結な開集合) U から \mathbb{R}^n への写像

$$(1.2) f: U \longrightarrow \mathbb{R}^n$$

を考える.

問 1.7. とくに n=1 のとき , (1.2) の f が C^0 -級 , C^1 -級 , C^2 -級 , \dots , C^r -級 , C^∞ -級 である , ということ の定義を述べなさい .

この講義では、簡単のため C^{∞} -級のことをなめらか、あるいは可微分という。

定義 1.8. 写像 (1.2) を

$$(1.3) f: (x_1, \dots, x_m) \mapsto (f_1(x_1, \dots, x_m), \dots, f_n(x_1, \dots, x_m))$$

と成分表示したとき , f が C^r -級 $(r=0,1,\ldots,\infty)$ である , とは $j=1,\ldots,n$ に対して $f_j\colon U\to\mathbb{R}$ が C^r -級であること , と定める .

定義 1.9. 写像 (1.2) が C^1 -級であるとき , 点 $p \in U$ における f の微分またはヤコビ行列を

$$df_p = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(p) & \dots & \frac{\partial f_1}{\partial x_m}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(p) & \dots & \frac{\partial f_n}{\partial x_m}(p) \end{pmatrix}$$

なる $n \times m$ 行列と定める. とくに n = m のとき,

$$J_p := \det(df_p) \left(= \frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_n)} \right)$$

を f の p におけるヤコビ行列式 (ヤコビアン Jacobian) という.

問 1.10. 写像 (1.2) が C^1 -級であるとき , $p \in U$ に対して

$$f(p+h) - f(p) = (df_p)h + R_p(h), \qquad \lim_{|h| \to 0} \frac{|R_p(h)|}{|h|} = 0$$

が成り立つ.このことを確かめなさい(実はこれが微分の定義).

合成関数の微分法(チェイン・ルール) 写像

$$f \colon \mathbb{R}^m \supset U \longrightarrow \mathbb{R}^n, \qquad g \colon \mathbb{R}^n \supset V \longrightarrow \mathbb{R}^l \qquad (f(U) \subset V)$$

が C^1 -級のとき , 合成写像 $g\circ f$ の微分は

$$(1.4) d(g \circ f)_p = (dg_{f(p)})(df_p)$$

で与えられる.ただし,右辺は行列の積である.

問 1.11. ● 式 (1.4) の右辺の行列の積が意味をもつことを示しなさい.

● これらの写像を

$$f(x_1, ..., x_m) = (y_1(x_1, ..., x_m), ..., y_n(x_1, ..., x_m)),$$

$$g(y_1, ..., y_n) = (z_1(y_1, ..., y_n), ..., z_l(y_1, ..., y_n))$$

と書くとき (1.4) は

$$\frac{\partial z_j}{\partial x_i} = \sum_{k=1}^n \frac{\partial z_j}{\partial y_k} \frac{\partial y_k}{\partial x_i}$$

と書くことができる、このことを確かめなさい、

陰関数定理

定理 1.12 (逆関数定理). 領域 $U\subset\mathbb{R}^n$ 上で定義された C^r -級写像 $f\colon U\to\mathbb{R}^n$ が,点 $p\in U$ において $J_p=\det(df_p)\neq 0$ を満たしているとする.このとき,U における p の近傍 V が存在して

$$f|_V \colon V \longrightarrow f(V) \subset \mathbb{R}^n$$

は全単射,かつその逆写像 f^{-1} が C^r -級となる.

- 問 1.13. ullet $\mathbb{R}=\mathbb{R}^1$ の開区間 I 上で定義された可微分関数 $f\colon I\to\mathbb{R}$ が $f'(x)\neq 0$ を I の各点 x で満たしてるならば,f(I) 上で定義された f の可微分な逆関数 $f^{-1}\colon f(I)\to I$ が存在する.このことの理由を述べなさい.
 - 上のことは 2 次元以上では成り立たな \mathbf{N} . すなわち , \mathbb{R}^n の領域 U 上で定義された可微分写像 $f\colon U\to\mathbb{R}^n$ のヤコビ行列式が U の各点で 0 でなかったとしても , f(U) 全体で定義された逆写像が存在しないことがある . n=2 の場合にそのような例を一つ作りなさ \mathbf{N} .

定義 1.14. 領域 $U,V\subset\mathbb{R}^n$ の間の写像 $f\colon U\to V$ が微分同相写像であるとは,次を満たすことである:

- f は全単射である.
- f は U で可微分 (C^{∞} -級) である.
- \bullet f^{-1} は V で可微分 (C^{∞} -級) である.

この言葉を用いればヤコビ行列式が () でない可微分写像は局所的に微分同相写像であるということができる.

問 1.15. 微分同相写像 $f\colon\mathbb{R}^n\supset U\to V\subset\mathbb{R}^n$ に対して $d(f^{-1})_q=\left(df_p\right)^{-1}$ $\qquad \left(q=f(p)\right)$ であることを示しなさい.

定理 ${f 1.16}$ (陰関数定理の特別な場合). 領域 $U\subset \mathbb{R}^2$ から \mathbb{R} への可微分写像

$$F: U \ni (x, y) \longmapsto F(x, y) \in \mathbb{R}$$

と $(x_0, y_0) \in U$ が

$$F(x_0, y_0) = 0,$$
 $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$

を満たしているとき, (x_0,y_0) の近傍 V と x_0 を含む $\mathbb R$ の区間 I,I 上で定義された可微分関数 $f\colon I\to\mathbb R$ が存在して, $V\cap\{(x,y)\,|\,F(x,y)=0\}=\left\{\big(x,f(x)\big)|x\in I\right\}$ が成り立つ.とくに F(x,f(x))=0 が成り立つ.

問 ${f 1.17.}$ 写像 $(x,y)\mapsto (x,F(x,y))$ に逆関数定理を適用することにより,定理 1.16 を示しなさい.

問 1.18. 定理 1.16 の関数 f の微分は

$$\frac{df}{dx}(x) = -\frac{F_x(x,y)}{F_y(x,y)} \qquad (y = f(x))$$

であることを確かめなさい.

問 1.19. 定理 1.16 を \mathbb{R}^n の領域から \mathbb{R} への写像 $F \colon \mathbb{R}^n \supset U \to \mathbb{R}$ に一般化しなさい.

いくつかの初等関数

三角関数と逆三角関数

- $\sec x = \frac{1}{\cos x}$, $\csc x = \csc x = \frac{1}{\sin x}$, $\cot x = \frac{1}{\tan x}$. $y = \cos^{-1} x \Leftrightarrow x = \cos y$ in $0 \le y \le \pi$.
- $y = \sin^{-1} x \Leftrightarrow x = \sin y$ かつ $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
- $y = \tan^{-1} x \Leftrightarrow x = \tan y$ かつ $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

双曲線関数

- $\cosh x = \frac{e^x + e^{-x}}{2}$: hyperbolic cosine; 双曲的余弦(そうきょくてきよげん)
 $\sinh x = \frac{e^x e^{-x}}{2}$: hyperbolic sine; 双曲的正弦(そうきょくてきせいげん)
 $\tanh x = \frac{\sinh x}{\cosh x}$: hyperbolic tangent; 双曲的正接(そうきょくてきせいせつ)

問 1.20.

- 証明しなさい: $\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}, \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}.$

$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}, \qquad \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}, \qquad 4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239} = \frac{\pi}{4}.$$

- 三角関数にならって,双曲線関数の公式集を作りなさい:
 - $(1) \cosh x$ は x の偶関数 $, \sinh x, \tanh x$ は奇関数; これらの関数のグラフ.
 - (2) $\cosh^2 x \sinh^2 x = 1$, $1 \tanh^2 x = \frac{1}{\cosh^2 x}$.
 - (3) $(\cosh x)' = \sinh x$, $(\sinh x)' = \cosh x$, $(\tanh x)' = 1 \tanh^2 x$.
 - (4) 逆関数: $x = \sinh y$ なら $y = \log(x + \sqrt{1 + x^2})$. $x=\cosh y,\ y\geqq 0$ なら $y=\log(x+\sqrt{x^2-1}).$ $x=\tanh y$ なら $y=\frac{1}{2}\log\frac{1+x}{1-x}.$ (5) $\cosh(x\pm y)=\cosh x\cosh y\pm \sinh x\sinh y$ (複号同順) .
 - $\sinh(x\pm y) = \sinh x \cosh y \pm \cosh x \sinh y \text{ (複号同順)}.$ $\tanh(x\pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y} \text{ (複号同順)}.$
 - (6) 2 倍角, 3 倍角, 積和, 和積...
- ullet $anhrac{x}{2}$ を t とするとき , $\cosh x$, $\sinh x$, anh x を t の有理式で表しなさい .

問題

1-1 (1) 次の等式を示しなさい

$$O(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$

$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$

- (2) 2 次直交行列 A が定める線形変換 $x\mapsto Ax$ は,原点のまわりの回転,あるいは原点を通る直線に関する折り返しとなることを示しなさい.
- 1-2 直交行列の固有値は絶対値 1 の複素数であることを示しなさい.
 - 3次の直交行列で行列式が1であるものの固有値の1つは1であることを示しなさい.
 - 行列 $A \in SO(3)$ に対してある $P \in SO(3)$ と $\theta \in \mathbb{R}$ が存在して

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

となることを示しなさい.

- ullet $A,\,B\in\mathrm{SO}(3)$ が , 固有値 1 に関する固有ベクトルを共有するならば AB=BA であることを示しなさい .
- 1-3 \mathbb{R}^n の等長変換が $f\colon \mathbb{R}^n\ni x\mapsto Ax+b\in \mathbb{R}^n$ $(A\in \mathrm{O}(n),b\in \mathbb{R}^n)$ とかけることを,次により示しなさい:
 - 等長変換 f に対して f(0)=a , g(x)=f(x)-a とおくと g は等長変換で g(0)=0 である .
 - $|g(\boldsymbol{x})| = |\boldsymbol{x}|$, $|g(\boldsymbol{y}) g(\boldsymbol{x})| = |\boldsymbol{y} \boldsymbol{x}|$ が成り立つ.
 - ullet $2x\cdot y=|x|^2+|y|^2-|x-y|^2$ を用いて $g(x)\cdot g(y)=x\cdot y$ が成り立つことを示す .
 - ullet g(x+y)-g(x)-g(y) の大きさが 0 などを示して , g が線形写像であることを示す .
 - 線形写像 g の表現行列が直交行列であることを示す.
- 1-4 正の定数 a,c に対して, \mathbb{R}^2 全体で定義された2 変数関数

$$F(x,y) = (x^2 + y^2 + a^2)^2 - 4a^2x^2 - c^2$$

を考える.

- ある正の数 y_0 が存在して $F(0,y_0)=0$ となるための,定数 a と c の条件を求めなさい.
- このとき ,ある関数 f が存在して , $(0,y_0)$ の近傍 V で $C=\{(x,y)\,|\,F(x,y)=0\}\cap V$ は y=f(x) のグラフでかけることを示しなさい .
- さらにそのとき f'(0) の値を求めなさい.

さらに , 一般の a,c に対して , 集合 $\{(x,y)|F(x,y)=0\}$ を , 関数のグラフで表されるような区間に分け , その関数の増減を調べることによって , この図形を図示しなさい .