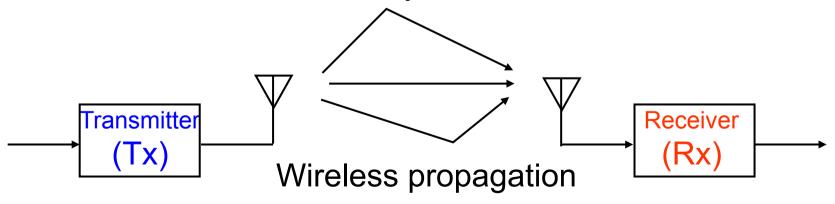
2016 2Q Wireless Communication Engineering

#0 Introduction to Course

Kei Sakaguchi sakaguchi@mobile.ee. June 17, 2016

Wireless Communication Systems


Your surrounding wireless communications

1) Pick up your surrounding wireless communication systems as many as possible

2) Explain specifications (frequency, modulation schemes, etc.) of those systems

Wireless communication systems

Aims of Course

Aims

This course enables students to have basic techniques to design wireless communication systems such as wireless LANs and cellular systems as in our daily life.

Measure

By picking up IEEE802.11a as a representative of modern wireless communication systems, the lecture gives details about technologies used in the system such as interference management, diversity combining, and multplexing.

Outcomes

The studetnts will be able to understand the design concept, transceiver architecture, role of components, and specifications of IEEE802.11a wireless LAN.

June 17, 2016

Related Courses

- Fourier Transform and Laplace Transform Spectrum, Convolution, Frequency conversion
- Applied Probability and Statistical Theory Gaussian distribution, Stochastic process, Auto correlation, Power spectral density
- Communication Theory Source & channel coding theory, Mutual Information
- Signal Systems

Linear time-invariant system, Signal space analysis

Textbooks

Textbook H. Matsue, M. Morikura, A. Sato, K. Watanabe, "Broadband Wireless Access Technologies," IEICE, 2004. (in Japanese)

Reference books K. Sakaguchi, S. Sampei, "Wireless Distributed Networks," IEICE, 2011. (in Japanese)

S.Haykin, "Communication Systems," 5th Edition International Student Version, Wiley, 2013.

Contents of Textbook

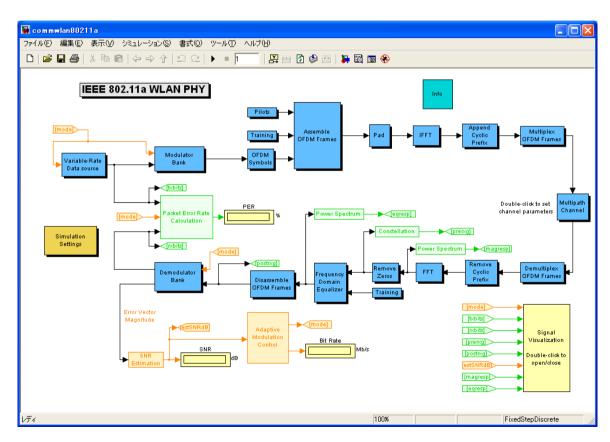
Contents	Notes
Introduction to wireless access	
Propagation modeling for wireless access	Not so much With other prints
Digital modulation & demodulation	Major scope
Factor of performance degradation and technologies to mitigate them	Major scope
Antenna	Out of scope
Access scheme	Major scope
WLAN system	Major scope
WLAN other than IEEE802.11	Out of scope
Fixed Wireless Access (FWA)	Out of scope
	Introduction to wireless access Propagation modeling for wireless access Digital modulation & demodulation Factor of performance degradation and technologies to mitigate them Antenna Access scheme WLAN system WLAN other than IEEE802.11

Course Schedule (1)

	Date	Text	Contents
#1	June 17	1, 7	Introduction to wireless communication systems
#2	June 17	2, 5, etc	Link budget design of wireless access
#3	June 24		Up/down conversion and equivalent baseband system
#4	June 24	3.3, 3.4	Digital modulation and pulse shaping
	July 1		No class
#5	July 8	3.5	Demodulation and detection error due to noise
#6	July 8	4.4	Channel fading and diversity combining

Course Schedule (2)

	Date	Text	Contents
#7	June 15	4.6	Error correction coding
#8	June 15		Adaptive modulation coding
#9	June 22	4.3	Inter symbol interference and adaptive equalizer
#10	June 22	3.6, 4.5	Spread spectrum and code division multiple access (CDMA)
#11	July 29	3.5	Orthogonal frequency division multiple access (OFDM)
#12	July 29		Array signal processing and MIMO spatial multiplexing
#13	TBD	all	Final examination


Assessment Criteria

Q&A in lecture (40 points) Date: Every lecture Method: Realtime Q&A via chat 4: excellent, 3: good, 2: average, 1: poor, 0: absence

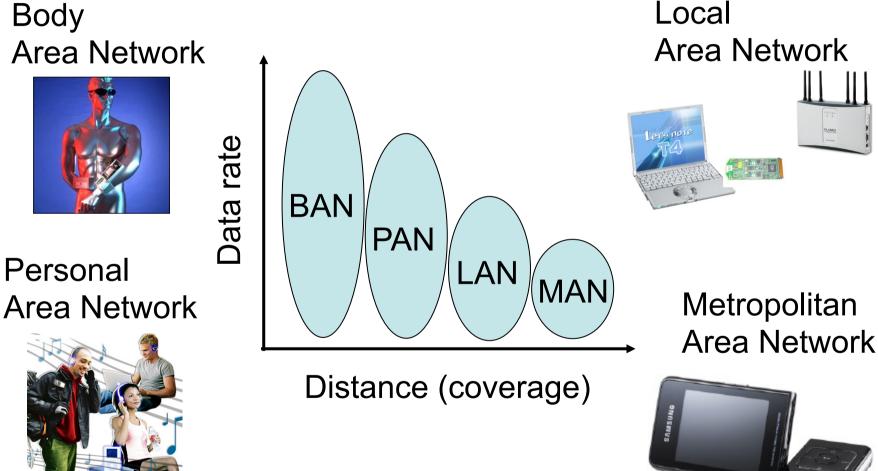
Final examination (60 points)
 Date: Beginning of august
 Method: Paper test to check technological understanding

MATLAB Simulator

Demonstration IEEE802.11a WLAN demo is available in MATLAB (Download MATLAB from <u>http://tsubame.gsic.titech.ac.jp/MATLAB-TAH</u>)

2016 2Q Wireless Communication Engineering #1 Introduction to Wireless Communication Systems Kei Sakaguchi sakaguchi@mobile.ee.

June 17, 2016


Course Schedule (1)

	Date	Text	Contents
#1	June 17	1, 7	Introduction to wireless communication systems
#2	June 17	2, 5, etc	Link budget design of wireless access
#3	June 24		Up/down conversion and equivalent baseband system
#4	June 24	3.3, 3.4	Digital modulation and pulse shaping
	July 1		No class
#5	July 8	3.5	Demodulation and detection error due to noise
#6	July 8	4.4	Channel fading and diversity combining

Contents

- Introduction to wireless communication systems
- Design of wireless communication systems
- Performance degradation factors
- Technologies to mitigate them
- Introduction of IEEE802.11a WLAN
- MATLAB demonstration

Classification of Wireless Communication Systems

Status of Cell-phone and WLAN

of shipments of cell-phone

4.060

1,270

2,790

12年度

13年度

4,100

1.020

68.7%

4,210

870

3.340

14年度

75.1%

4,095

81.9

740

3.355

15年度

(@ MM総研)

79.3%

■ スマートフォン出荷台数

3,764

2.909

10年度

3,444

3,210

4.274

1.857

2,417

11年度

56.6%

(万台)

4,500

4,000

3,500

3,000

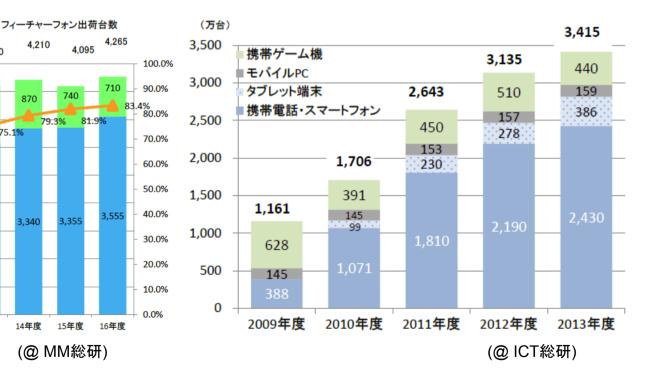
2,500

2,000

1,500

1,000

500


0

3.58

3,479

08年度

of WLAN enabled terminals

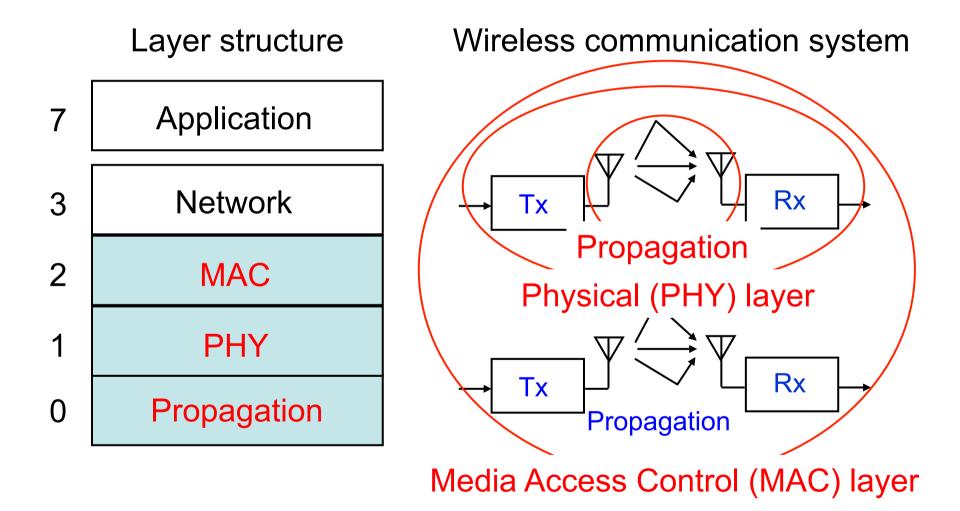
09年度

Wireless Communication Engineering

International Harmonization & Spectrum Regulation

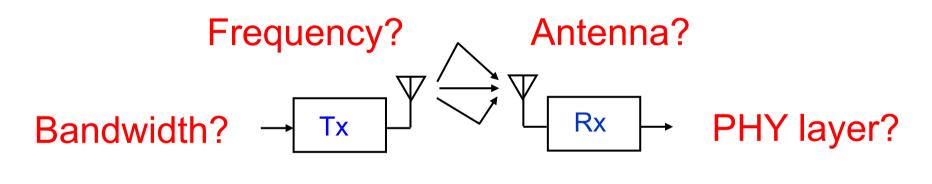
ITU (International Telecommunication Union)

- International spectrum recommendation
- 3kHz ~ 300GHz


WRC

(World Radio Conference)

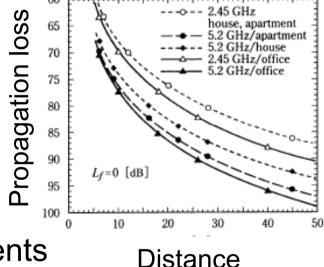
- Amendment of international treaty
- Every 4 years
- Latest meeting at Nov. 2015


Milli	60GHz	Ultra high speed WLAN
	38GHz	
Sub-milli	26GHz	Fixed Wireless Access (FWA)
	19GHz	High speed WLAN
Micro	5GHz	High speed WLAN
Sub-micro	2.5GHz	High speed WMAN (WiMAX)
	2.4GHz (ISM band)	Low power data access (WLAN)
	2GHz	4G cell phone (LTE)
	1.9GHz	PHS
	1.5GHz	
	900MHz	3G cell phone (WCDMA)
	800MHz	

Wireless Communication Systems

Design of Wireless Communication Systems

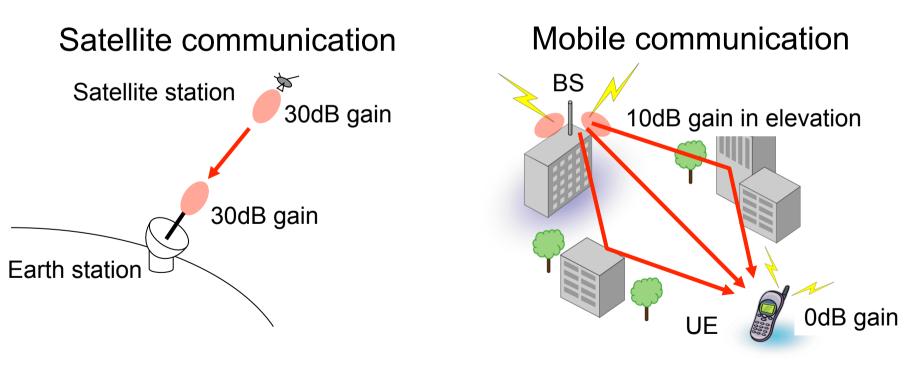
How to design wireless communication systems?



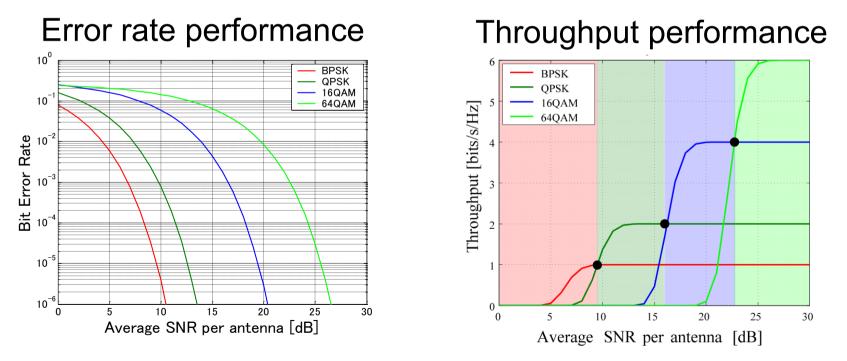
Transmit power? MAC layer?

Frequency, Bandwidth, Tx Power

- 1. Scenarios Indoor, Outdoor, Distance, Data rate
- 2. Frequency and Bandwidth Politically determined based on ITU-R recommendation
- 3. Propagation loss [□] [□] [□] Depends on frequency and environments
- 4. Transmission power
 Minimum data rate → Minimum Rx power
 Minimum Rx power + Propagation loss = Minimum Tx power
 Unnecessary increase of Tx power causes interferences

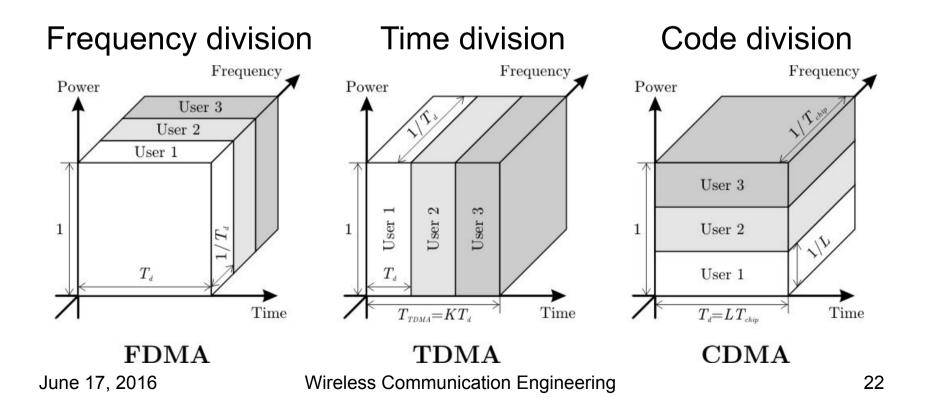


Antenna

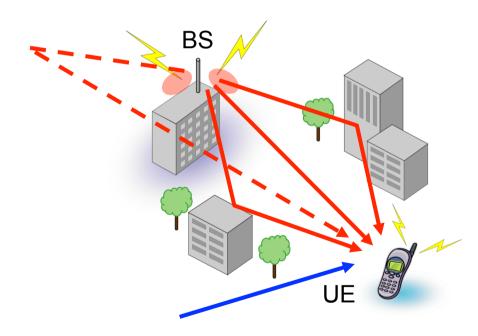

5. Antenna

To compensate propagation loss due to distance Design of antenna location and directivity

PHY Layer


6. Physical (PHY) layer scheme
 Maximization of reliability → Forward error correction
 Maximization of data rate → Adaptive modulation & coding
 Tradeoff between performance and complexity

Wireless Communication Engineering

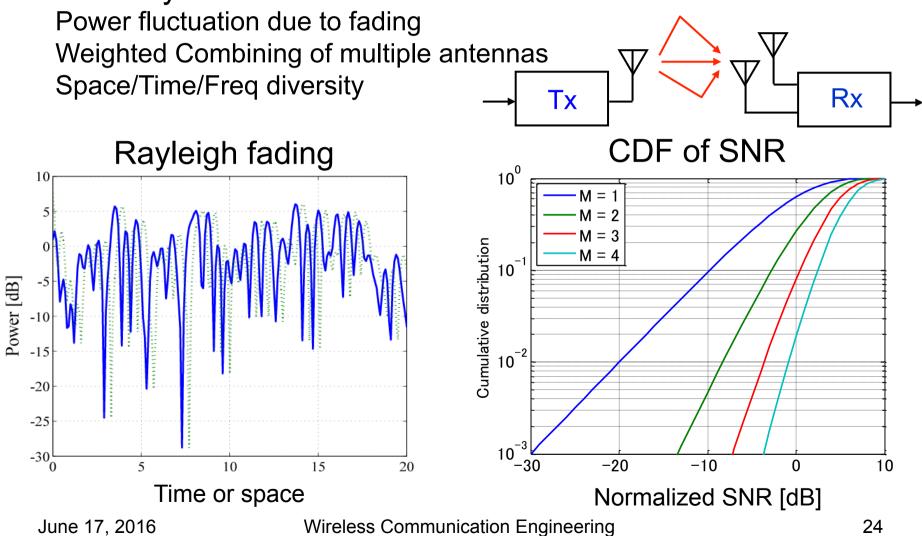

MAC Layer

 Media Access Control (MAC) scheme Resource allocation rule for multiple terminals Reserved: FDMA, TDMA, CDMA Contention: ALOHA, CSMA (Carrier Sense Multiple Access)

Performance Degradation and Technologies to Mitigate

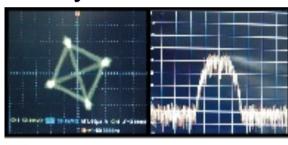
Factor of performance degradation in wireless communications

Fading (standing wave)

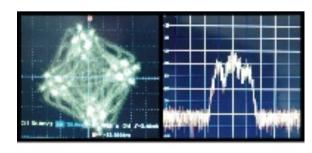

Superposition of multi-path signals

Inter symbol interference Due to long delayed signals

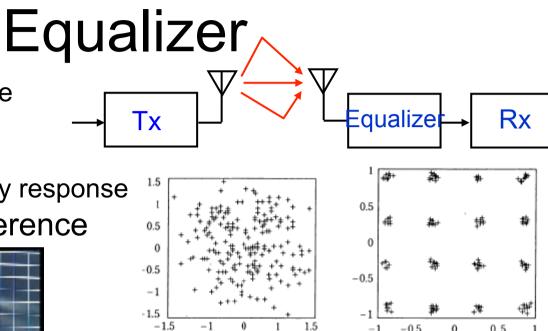
Inter system interference Due to shared radio channels (ISM)

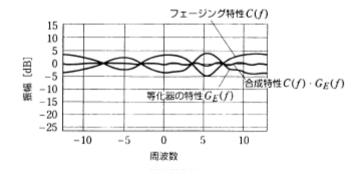

Fading and Diversity

1. Diversity



Inter Symbol Interference and


- 2. Equalizer
 - Inter symbol interference due to delayed signal
 - → Equalizer to realize inverse frequency response Inter symbol interference

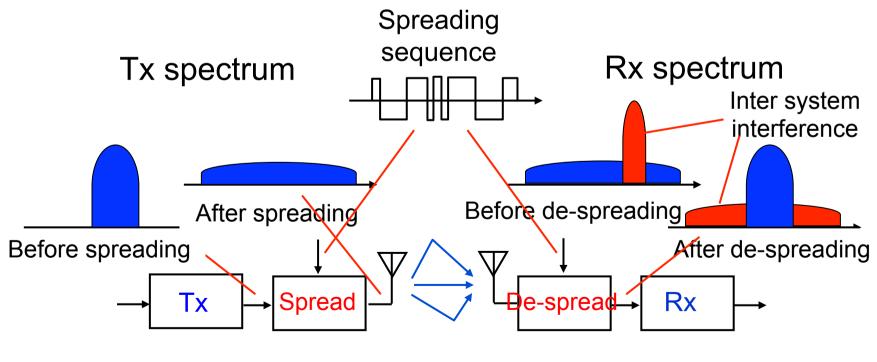

Without delay signal

With delay signal

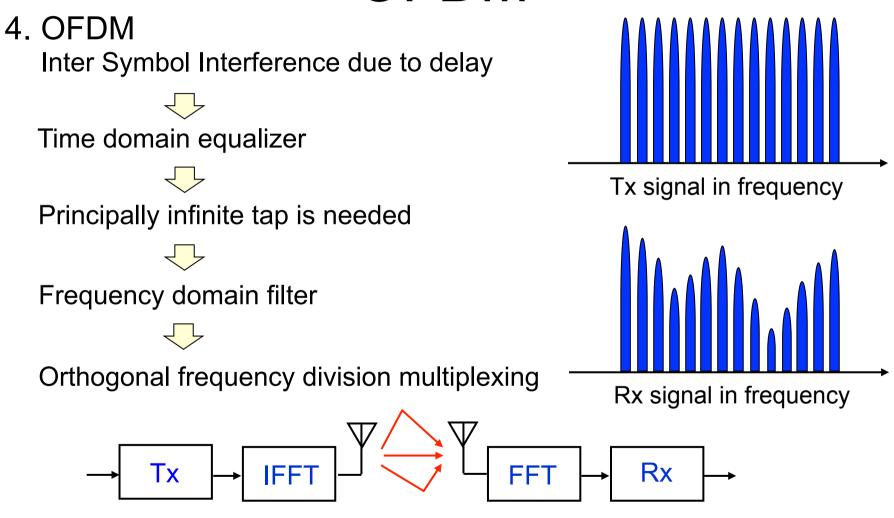
Before equalization After equalization

Frequency response of equalizer

June 17, 2016


Wireless Communication Engineering

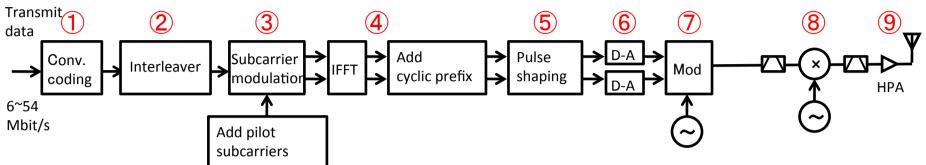
Inter System Interference and CDMA


3. CDMA

Inter system interference due to shared radio channels Spreading & de-spreading using common code between Tx & Rx Code Division Multiple Access (CDMA)

 \rightarrow Suppress interference from other systems

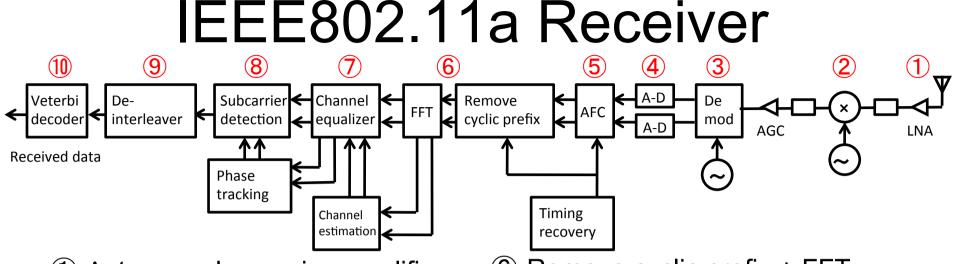
Inter Symbol Interference and OFDM



IEEE802.11 WLAN

Wireless access in indoor environment using ISM band

	802.11b	802.11a	802.11g	802.11n	802.11ac
Year of approval	1999	1999	2003	2009	2014
RF band	2.4GHz	5GHz	2.4GHz	2.4 & 5GHz	5GHz
Channel bandwidth	20MHz	20MHz	20MHz	20/40MHz	20/40/80/ 160MHz
Modulation	DSSS, CCK	OFDM, AMC	OFDM, AMC, CCK	MIMO-OFDM, AMC, CCK	MIMO-OFDM, AMC256Q, MU-MIMO
Max data rate	11Mbps	54Mbps	54Mbps	600Mbps	6.93Gbps
MAC	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA+ MU-MIMO


IEEE802.11a Transmitter

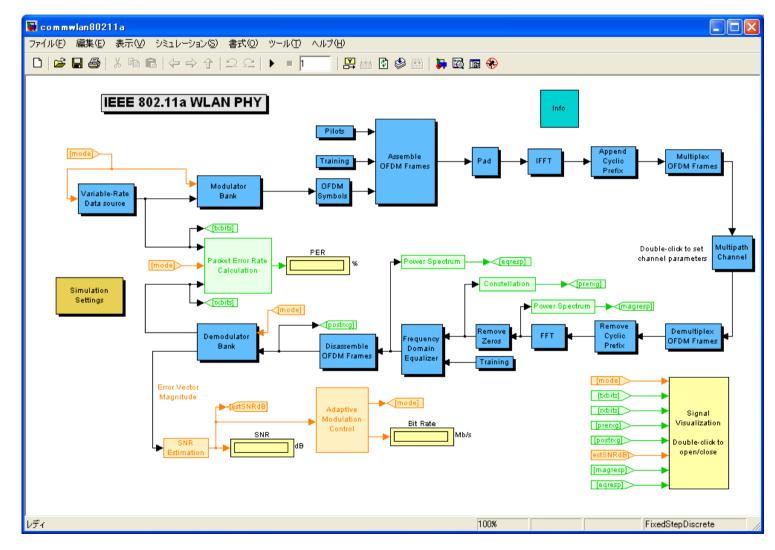
- Convolutional coding + Puncture (**1**) Adaptive parity bit control
- (2) Interleaver Subcarrier randomization
- (3) Subcarrier modulation BPSK~64QAM adaptive modulation
- (4) IFFT+Add cyclic prefix **OFDM** modulation
- 5 Pulse shaping Reduce power leakage

(6) D-A **Digital-Analog conversion**

- (7) Modulation Conversion to IF signal
- (8) Mixer
 - Conversion to RF(5GHz) signal
- (9) High power amplifier + antenna Transmission of RF signal

- Antenna + Low noise amplifier Receiption of RF signal
- 2 Mixer

Frequency conversion to IF

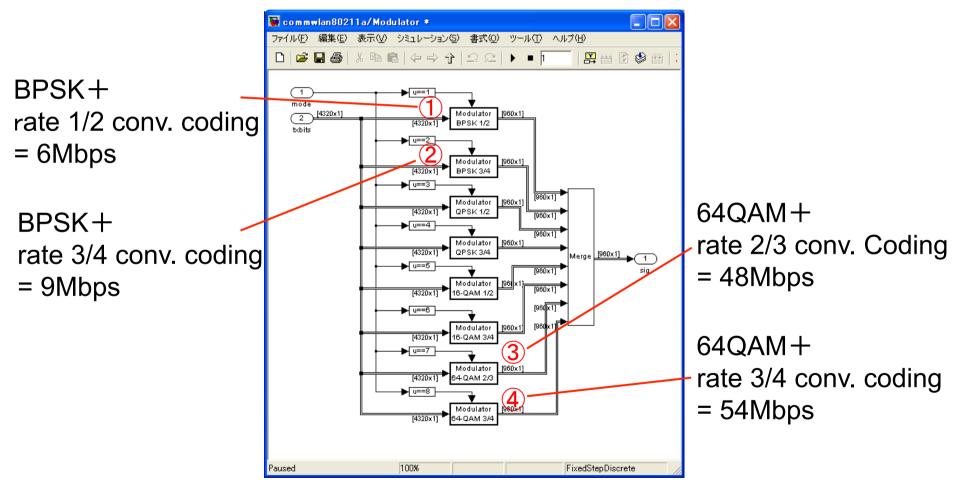

- ③ Demodulator Conversion to baseband signal
- ④ A-D Analog-Digital conversion
- ⑤ AFC、Timing recovery① Viterbi de
Time frequency synchronizationJune 17, 2016Wireless Communication Engineering

- 6 Remove cyclic prefix + FFT OFDM demodulation
- ⑦ Channel equalizer
 Frequency domain equalizer
- (8) Subcarrier detection
 BPSK~64QAM demodulation
- 9 De-interleaverInverse of interleaver
- Viterbi decoder
 Forward error correction

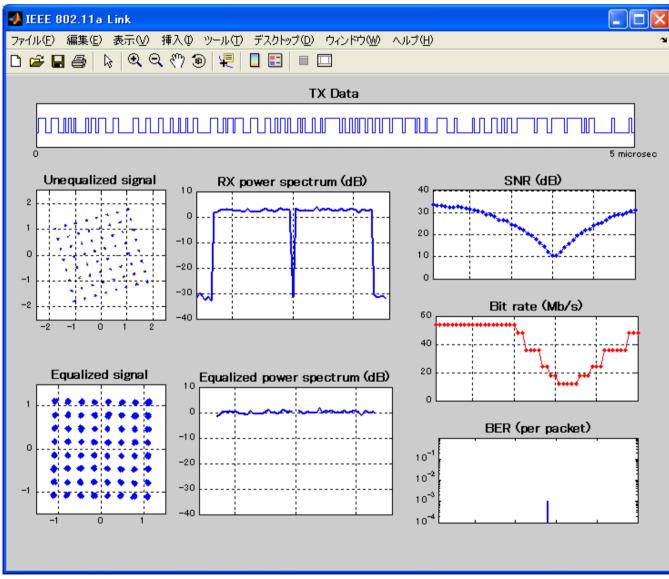
Specification of IEEE802.11a

Modulation	OFDM (Orthogonal Frequency Division Multiplexing) (Subcarrier modulation: BPSK, QPSK, 16QAM, 64QAM)
Subcarriers	52 (including 4 pilot subcarriers) Assuming 64 point FFT
Error correction	Convolutional coding with subcarrier interleaver constraint length: K=7, coding rate: R=1/2, 2/3, 3/4 Viterbi decoding
Data rates	6 Mbit/s (BPSK, R=1/2) mandatory 9 Mbit/s (BPSK, R=3/4) option 12 Mbit/s (QPSK, R=1/2) mandatory 18 Mbit/s (QPSK, R=3/4) option 24 Mbit/s (16QAM, R=1/2) mandatory 36 Mbit/s (16QAM, R=3/4) option 48 Mbit/s (64QAM, R=2/3) option 54 Mbit/s (64QAM, R=3/4) option
OFDM symbol	4.0 µs
Guard interval	0.8 µs
Bandwidth	16.6 MHz
Channel	4 (Available frequency: 5.150~5.250 MHz [Japan]) Channel spacing:20MHz

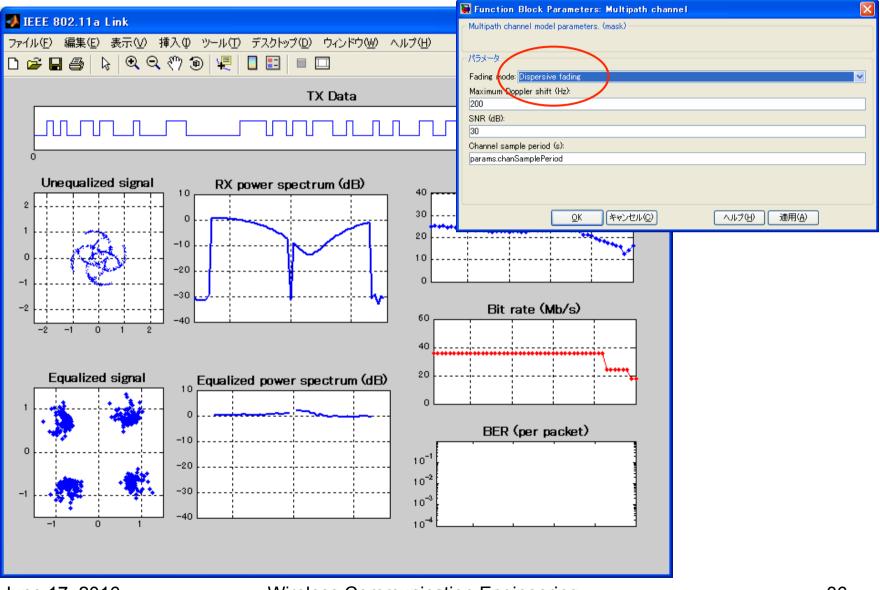
IEEE802.11a Demonstration


IEEE802.11a Demo (Tx1)

Subcarrier modulation



IEEE802.11a Demo (Tx2)


Adaptive Modulation Coding

IEEE802.11a Demo (no delay)

IEEE802.11a Demo (with delay)

Summary

- Introduction to wireless communication systems BAN, PAN, LAN, MAN, ITU, PHY, MAC
- Design of wireless communication systems
 Frequency, Bandwidth, Tx power, Antenna, PHY scheme
- Factor of performance degradation Fading, Inter symbol interference, Inter system interference
- IEEE802.11a WLAN WLAN using OFDM and adaptive modulation coding