間接遷移型半導体と直接遷移型半導体に関する一考察 - 半導体遷移型の新しい解釈 -

高田 育紀

A Reconsideration on the Indirect and the Direct Semiconductors - New Interpretations of the Transition Type of Semiconductors -

Ikunori Takata

Indirect semiconductors are said that they have two kinds of energy gaps (E_g, E_{g0}) and don't emit bright light. However, porous silicon or GaP crystal are able to emit light obviously. Also, the junction detector of the particle energy in a huge accelerator uses much larger E_g for the pair-generation energy than indirect semiconductors' or direct semiconductors' E_{g0} . In this report, the author would review these contradictions and characteristics of both semiconductor types and propose a new interpretation that could solve them.

キーワード:間接遷移型半導体, 直接遷移型半導体, エネルギー ギャップ, ドリフト移動度, 有効質量, 原子半径. **Keywords:** indirect semiconductors, direct semiconductor, energy gaps, drift mobility, effective mass, atom radius.

1. 今更ながらの疑問

- 間接遷移型半導体の発光現象:
- 間接遷移型半導体でも特定の操作を加えると強く 発光する。例えば、陽極化成で形成した多孔質シ リコン (porous slicon)[†]は、単に電流を流すだけ で赤色からオレンジ色に発光するし^{††}、蒸気圧制 御温度法で成長させた高品位の GaP 結晶は純緑 色高輝度 LED として実用化された。
- $E_{g}, E_{g0}, > E_{g0}$ のエネルギーギャップ: 高エネルギー加速器等で粒子エネルギーの観測に 用いられる半導体接合検出器 (junction detector) が想定している正孔-自由電子の対発生エネルギー 値 $E'_{g0}(s.j.d.)$ は、間接遷移型半導体や直接遷移 型半導体の E_{q0} 値よりも大幅に大きい。
- III-V 化合物や II-VI 化合物が形成する共有結合?: IV 族元素は周囲 4ヶの原子との共有結合に因って結晶化しているが、III-V 化合物や II-VI 化合物はどのような形で結合しているのだろうか?
- ドリフト移動度の決定機構:
 ドリフト移動度を統合的に説明し得る理論はないようだが、各半導体での正孔と自由電子の値は

Fig.1. ドリフト移動度の測定値と各軌道形態の 有効質量から予想した予想値 (Si の μ_e/m_e^{*} 比を基準).

Table 1. ドリフト移動度の測定値 (単位: cm²/Vs).

単結晶	自由電子 (μ_e)	正孔 (μ_h)
3C-SiC	800	40
4H-SiC	800/680	100
6H-SiC	80/400	90
GaN	1,000	10
Si	1,500	450
Ge	3,900	1,900
GaAs	8,500	400
Diamond	2,200*	1,600

4H-SiC, 6H-SiC は (||c 軸値/⊥c 軸値) を示す.

Fig.1に示すような簡単な関係が存在している^{†††}。 本報告では、これらの問題の解決案を提起したい。

^{*} 電気学会員

IEEJ member

[†]多孔質と呼ばれているが孔は空いておらず、シリコン結晶の 骨格を維持している 2 ~ 3*nm*^{\$\phi}の球状構造の集合体である。

^{††} 紫外光を照射すると、緑色や青色を発光させることも出来る。

^{†††} 縦軸は5節"間接型半導体と直接型半導体の諸特性"参照。

2. IV 族半導体の結晶構造 (共有結合)

シリコンやゲルマニウムの結晶は Fig.2 のように表 されているが、Fig.3 に示すように平面上に並んだジ クザク状連鎖群が直交する状況にある (立方晶)。Fig.4 は、縦横の平面が交差する箇所の原子配置である。

Fig. 2. シリコン結晶の格子点と結合方向. (Si 原子は 20%縮小表示.実際には接触し合っている)

Fig. 3. シリコン格子の1次元連鎖群による構成.

Fig.4. シリコン原子の1次元連鎖単位.

3. 正孔と自由電子の電子軌道:A,B,C形,...

2ヶの原子の間の共有結合は、Fig.5 に示すように、 それぞれ1ヶの電子が両原子の最外殻軌道に渡って巡 る状態であると、著者は考える。そうすると、周回振 動数 ν が1/2になるのに応じて電子軌道を周回するエ ネルギー $h\nu$ が半分になって、結晶全体のエネルギー も大きく減少する。化学結合で最も強力な共有結合の 結合力はこうして説明できよう。

Fig. 5. 2ヶの原子間の共有結合状態 (A 形).

そして、例えば Fig.4 の原子 B を例にとれば、その 周りの原子 A, C, E, F とそれぞれ共有結合するのだ が、その内の1ヶの結合が切れると、結合に与っていた 電子はそれぞれ1原子を周回する(結合前の)状態に戻 る。この電子の片方が取り除かれた状態が"正孔"で、 逆に片方の原子を周回する不対電子が2ヶに成った状 況が"自由電子"であると、著者は提起した^{(1),(2)}。

さて、Fig.6 に示す9ヶの原子群を単位として、Fig.2 の結晶構造を組み立てることが出来る。この原子群の 中には、Fig.7-(i) に示すような、6ヶの原子を巡る実 線と破線の2ヶの軌道が想定できる[†]。著者は、この実 線と破線を交互に巡る電子軌道が存在し得て、それに よってFig.5の2ヶの原子を巡る軌道に相応した、原子 群間での電子軌道の共有状態が生じ得ると予想する。 さらに、それぞれ原子群の対における不対電子軌道の 過不足が自由電子や正孔に当たることになる。このよ うな量子力学が否定する電子軌道の考え方が前述の問 題解決の鍵になると、著者は考える。

Fig. 6. 9ヶの原子群中の 2ヶの電子軌道 (B形).

Fig. 7. 6ヶの原子環を巡る軌道 (B形).

この新しい考え方では、正孔や自由電子の移動は、 隣り合う原子(群)の共有結合が切断されて、電子軌道 の移動が(熱速度 v_{th} で)起こり、その後、切断箇所が 再び再結合されることが繰り返されて進行する。電子 の周回エネルギー $h\nu$ は、周回長に反比例する(式 1)。

[†]この実線を抜き出したのが Fig.7-(ii) である。Fig.6 の原子 群はベンゼン環と同じ結合状態と見なせよう。

1	半導体	Dia.	4H-SiC	3C-SiC	Si	AlP	GaP	AlAs	Ge	AlSb
2	$E_{g0}^{\prime}(s.j.d.)$	13	7.8	7.8	3.66	(4.3)	(3.4)	(3.2)	2.96	(2.2)
3	$E_{g0}(meas.)$	7.4	(6)	6	3.5	4.3	2.9	3.2	0.85	2.2
4	$E_{up.M} = E'_{g0}/2$	6.5	3.9	3.9	1.83	2.15	1.7	1.6	1.48	1.1
5	高 energy 時対発生形	Α	А	А	Α	A'	A'	A'	A	A'
6	対発生形 [Eg0:電子+正孔]	A+B	B+A	B+A	A+A	(A+A)	(A+A)	(A+A)	B+B	(A+A)
7	$E_{g0}(calc.)$	8.67	(5.2)	5.2	3.66	—	—	—	0.99	—
8	$E_{g0}(calc.)/E_{g0}(meas.)$	1.17	(0.87)	0.87	0.96	_	_	_	1.16	_
9	対発生形 [Eg:電子+正孔]	B+B	B+A	B+B	B+B	B+A	B+A	B+A	C+B	B+A
10	$(E_{up.e} + E_{up.h})/E_{up.M}$	$\frac{1}{3} + \frac{1}{3}$	$\frac{1}{3} + 1$	$\frac{1}{3} + \frac{1}{3}$	$\frac{1}{3} + \frac{1}{3}$	$\frac{1}{3} + 1$	$\frac{1}{3} + 1$	$\frac{1}{3} + 1$	$\frac{1}{9} + \frac{1}{3}$	$\frac{1}{3} + 1$
11	$E_g(calc.)$	4.3	5.2	2.6	1.22	2.87	2.3	2.1	0.65	1.5
12	$E_g(meas.)$	5.5	3.3	2.2	1.1	2.45	2.23	2.1	0.66	1.6
13	$E_g(calc.)/E_g(meas.)$	0.79	1.58	1.18	1.11	1.17	1.03	1.02	1.0	0.92
14	$r_{ave.} (pm)$	77	97	97	117	118	118	122	122	131
15	$E_{up.M}(calc.)$	4.23	2.66	2.66	1.83	1.80	1.80	1.68	1.68	1.46
16	$E_{up.M}(calc)/(E'_{g0}/2)$	0.65	0.68	0.68	1	0.84	1.05	1.05	1.14	1.33
17	$\mu_e \ (cm^2/Vs)$	(2, 200)	800	800	1,500	60	110	200	3,800	200
18	$\mu_h \ (cm^2/Vs)$	1,600	100	40	450	450	75	100	1,900	400
19	伝導形態 [電子/正孔]	(B)/B	B'/a	B'/a	B/A	a/A	a/a	a/a	C/B	a/A

Table 3. 間接遷移型半導体での実効的なエネルギー ギャップ Eg の試算 (エネルギー単位:eV).

*: Dia.'s μ_e , μ_h : TOF 測定値. 産総研 試作結晶の Hall 測定値は $\mu_e = 660 cm^2/Vs$. この値を採用すると伝導形態は A/B となる.

また、周回エネルギーは、有効質量 m^* と周回速度 v_c を用いて、 $m^*v_c^2$ とも表されて (式 2)、 v_c はどの軌道 形態でも変わらないので m^* は周回長に反比例する。

 m^* :有効質量, v_{or} : 軌道周回速度.

このため、それぞれの軌道形態での有効質量 *m** は 次のようになる⁽¹⁾。

- 1. A形: 原子 1ヶを周回する軌道 (m_A^{*}=m₀).
- 2. B形: 原子 6ヶの周回軌道 $(m_C^* = m_0/3)$.
- 3. C形: 原子 18ヶの周回軌道 $(m_D^* = m_0/9)$.
- D形, E形, …: 原子 nヶを周回する軌道 (m_X^{*}=2m₀/n, n=30, 42, 54, …).

そして、ドリフト移動 μ は (3式) と表されて、運動量 緩和時間 τ_m は多くの材料でほぼ一定で $\approx 2 \times 10^{-13}s$ 程度であることが経験的に知られているので、有効質 量 m^* に反比例すると見なし得る (q は電気素量)。

 $\mu = \frac{q \, \tau_m}{m^*} \cdots (3)$

すると、主な半導体の自由電子と正孔の電子軌道形 態を Table 2 のように見積もれよう。B' は本来の B 形形態が現れ難い状況で、a は共有結合がさらに形成 され難いために A 形形態でさえ取り難い状況を示す。 この表には、シリコンの自由電子の μ_e を (A 形のドリ フト移動度 μ_A と見なして)基準にした各半導体の μ_e や μ_h との比率も示している。B 形は 3 倍、C 形は 9 倍になる原則と一致する傾向が認められる。

Table 2. 自由電子と正孔の周回軌道形態の予想.

単結晶	μ_e/μ_A	μ_h/μ_A	自由電子	正孔
3C-SiC	1.8	0.09	В'	а
4H-SiC	1.8	0.22	В'	а
6H-SiC	0.89	0.20	А	a
GaN	2.2	0.02	В'	-
Si	3.3	1	В	А
Ge	8.7	4.2	С	В
GaAs	19	0.89	D	A
Diamond	(4.9)	3.6	(B)	В

4H-SiC, 6H-SiC の μ_e/μ_A は、 μ_e 大の方向を示す.

4. 3種の energy gap: $E'_{q0}(s.j.d.), E_{g0}, E_{g}$

Table 3 に、主な間接遷移型半導体の諸特性を示す。 2 行目 $E'_{g0}(s.j.d.)^{\dagger}$, 3 行目 $E_{g0}(meas.)^{\dagger\dagger}$, 12 行目 $E_g(meas.)$ は3 種類の E_g 値の測定値である。Table 4 には、主な直接遷移型半導体の諸特性を示す。半導体接 合検出器が用いている対発生エネルギー値 $E'_{g0}(s.j.d.)$ は E_{g0} よりもかなり大きいものが存在する。

エネルギー ギャップ E_g は、Fig.8 に示すように^{††}、 正孔と自由電子の不対電子の軌道エネルギー ($E_{or.h}$, $E_{or.e}$)の和に当たり (式 4)、結晶中の不対電子軌道の

[†]()内は著者の予想値である。 $E'_{g0}(s.j.d.)$ は、原子番号が小 さい場合は E_{g0} と差が大きく、増えると $E'_{g0}(s.j.d.) \approx E_{g0}$ の 傾向が窺えるので、Si 以上では E_{g0} と同じ値とした。 ^{††} E_{g0} は直接遷移 (k = 0) での E_g という意味で用いている。

⁺⁺⁺ E_{co} は"凝集エネルギー"と呼ばれ、固体物質が個々の孤立 原子 (ガス原子) になる際に吸収される (原子 1ヶ当たりの) エ ネルギーの測定値である (Si:4.6eV, Ge:3.9eV)。

1	半導体	GaN	InN	GaAs	InP	GaSb	InAs	InSb
2	$E'_{g0}(s.j.d.)$	8.9	(1.9×3)	4.3	(1.35×3)	(0.67×3)	(0.36)	(0.17)
3	$E_{g0}(meas.)$	3.4	1.9	1.43	1.35	0.67	0.36	0.17
4	$E_{up.M} = E'_{g0}/2$	4.45	2.85	2.15	2.0	1.0	0.18	0.085
5	高 energy 時 対発生形	A	Α	Α	Α	Α	С	D
6	高 energy 時 軌道長比 [R _{rate}]	1	1	1	1	1	9	15
7	対発生時の軌道形態	В	В	В	В	В	С	D
8	$r_{ave.} (pm)$	98	107	122	127	131	131	140
9	$E_{up.M}(calc.)$	2.57	2.15	1.66	1.53	1.44	0.16	0.08
10	$E_{up.M}(calc.)/(E'_{g0}/2)$	0.58	0.75	0.77	0.75	1.43	0.89	0.99
11	$\mu_e \ (cm^2/Vs)$	1,200	2,000	9,000	5,400	4,000	40,000	78,000
12	$\mu_h \ (cm^2/Vs)$	10	_	400	200	<200	500	850
13	伝導形態 [電子/正孔]	B'/ -	C/ -	D/b	C/b'	C/b'	O/b	$\approx Z/B'$

Table 4. 直接遷移型半導体での正孔-自由電子対発生時の軌道形態の予想 (エネルギー単位:eV)

Fig. 8. 正孔, 自由電子の軌道 energy と E_q [Fig.4⁽¹⁾].

エネルギー E'_{up} 2ヶ分と見なせよう (式 4) ^{††† (1)}。こ の E'_{up} は、共有結合を構成する前 ^{†5}の電子軌道エネ ルギー E_{up} の 4/5 程度であろうと期待できる ^{†6}(式 5)

$$E_{g} = E'_{g0}(s.j.d.) = -E_{or.e} + E_{or.h} \cdots (4)$$

$$\approx -2E'_{up} \approx -2\left(\frac{4}{5}E_{up}\right) \cdots (5)$$

$$E_{up}: 不対電子の軌道エネルギー (負値).$$

そうすれば、先節のような A 形, B 形, C 形, … の ような多様な軌道形態が存在するならば、同じ半導体 においても有効質量 *m** が異なる状況が出現して、複 数のエネルギー ギャップ値が現れると予想できる。

5. 間接型半導体と直接型半導体の諸特性

さて、下記の項目 (I.)~(VI.) を原則にすれば、各種 半導体のエネルギー ギャップ $E'_{g0}(s.j.d.), E_{g0}, E_g$ や ドリフト移動度 μ_h, μ_e をかなり上手く説明できる。

I. 高エネルギー下では、間接遷移型,直接遷移 型半導体とも、A形同士の正孔-自由電子による 対発生だけを引き起こす (*E'*_{a0}(*s.j.d.*)の決定)。

Table 5. 各種半導体での電荷担体軌道の組合せ.

	Dia.	Si	Ge	GaAs	InSb				
dir./indir.	indir.	indir.	indir.	dir.	dir.				
$E'_{g0}(s.j.d)$	A+A	A+A	A+A	A+A	(D+D)				
E_{g0}	A+B	A+A	B+B	B+B	D+D				
E_g	B+B	B+B	C+B	-	-				
μ_e/μ_h	(B)/B	B/A	C/B	D/A	Z/A				
(InSb の Z は、A 形 等の軌道形態に当てはめ難い)									

(A+A) 等は (自由電子形態+正孔形態) を示す.

- II. $E'_{g0}(s.j.d.)$ の観測値を、不対電子軌道2r分の エネルギーと見なす $(-E_{up} \approx E'_{g0}(s.j.d.)/2)$ 。
- III. 通常エネルギー下では直接遷移型半導体は同形の正孔-自由電子が対発生する (*E*_{g0}の決定)。
- IV. 間接遷移型半導体は、通常エネルギー下で軌 道形態が異なる正孔と自由電子の対発生も可能 で、その傾向は特に単一元素結晶で強い。その 主要なエネルギー値が E_g である (E_g の決定)。 従来 E_{g0} とされてきたエネルギー値は、派生 する中間段階の1つに過ぎない (E_{a0} の決定)。
- V. 化合物半導体で、B形同士の電子軌道形態の 対発生が起こるものが直接遷移型半導体で、B-A形の対発生になるのが間接遷移型半導体と区 分できる。後者のドリフト移動度が小さい原因 は、B形対発生が困難である原因と同根である。
- VI. ドリフト運動時の軌道形態は、対発生時の軌 道形態と異なる形を取り得る (μ_e, μ_h の決定)。

"高 energy 時対発生形", "対発生形 [電子+正孔]"や "対発生時の軌道形態", "伝導形態 [電子/正孔]"欄に、 著者が予想する軌道形態を示している[†]。

どの半導体も、高エネルギー状態では A 形の自由 電子と A 形の正孔が対発生形態する。ところが、通常 エネルギーでの対発生/再結合モードは、基本的に自 由電子と正孔が同形であるが、A 形よりも軌道長が長

^{††††} 自由電子の 2ヶの不対電子の間に相互作用が無い場合。 ^{†5} それは、共有結合が解消された状況とも言える。 ^{†6} 同じ正電荷に対する電子数が 4ヶから 5ヶに増えるので、結 晶中の周りの原子からのクーロン力が働かないとすれば、クー ロン力による影響は 4/5 になろう。

[†] B' の' や小文字 b 等の用法は Table 2 に準じている。

Fig. 9. *E*[']_{g0}(*s.j.d.*)の平均半径 *r_{ave}*. 依存性. (•問接遷移型半導体,□:直接遷移型半導体,()内は予想値)

い軌道形態同士でも起こり得る。さらに、間接遷移型 半導体ではより広い範囲の組み合わせも起きる。例え ば、シリコンやゲルマニウムという対称性の良い IV 族 半導体では、正孔と自由電子の軌道形態が A-A, B-A, B-B, C-B, C-C 等の様々な組み合わせで再結合が起こ り得ると、著者は予想する^{††}。加えて、ドリフト伝導 形態については、自由電子と正孔の組み合わせの制限 が緩くなる。Table 5 は、主な半導体の(自由電子, 正 孔)の軌道形態の組み合わせである^{†††}。

Table 3 の 11 行目の $E_g(calc)$ は、間接遷移型半導体 のいわゆる E_g を自由電子と正孔の軌道エネルギーの和 $(E_{up.e}+E_{up.h})$ として求めた値である。13 行目に示す ように、(4H-SiC の 1.6 倍を除いて) 実測値 $E_g(meas.)$ の 0.9~1.2 倍が得られたことは良い一致と言えよう。

なお、Table 3, Table 4 の $r_{ave.}$ は各半導体の構成 原子の平均 (共有) 半径である。そして、 $E'_{g0}(s.j.d.)$ の測定値は、Fig.9 に示すように、平均半径 $r_{ave.}$ と 共に単調に減少する。両表の $E_{up.M}(calc)$ に示す不対 電子のエネルギーが、シリコンの $E_{up} = E'_{g0}/2$ と半 径 r_{Si} を基準にして、(6 式) と表されることから、こ の結果は妥当と言えよう[†]。この式は、軌道角運動量 m^*vr が $h/2\pi$ に限られるので (式 7) クーロン力下の 電子の周回半径 r と周回速度 v_{or} が反比例することと $E = m^*v_{or}^2$ (式 2) から導いた関係である^{††}。

(i) 破線軌道原子 (ii) 実線軌道電子Fig. 10. III-V 族半導体の B 形軌道への供給電子数.

R_{rate}: 高エネルギー時の軌道長比率.

Table 3 の 16 行目と Table 4 の 10 行目に示す $E_{up.M}(calc.)/(E'_{g0}/2)$ 比が 0.6~1.4 であることは、 新しい考え方が概ね妥当であることを裏付けていよう。

6. III-V 族と II-VI 族半導体の構成

半導体特性の出現には共役結合の連続領域が不可欠 であると、著者は考えている。共有結合の基本は、一 対の原子からそれぞれ1ヶずつ供給された最外殻電子 が両原子に共有されて成立する。そして、三次元結晶 を構成する為には最低4ヶの結合手が必要である。そう であれば、IV 族半導体以外の III-V 族半導体や II-VI 族半導体において、隣同士の原子がどのように均一な 結合を構成するのであろうか。原子間で電子を完全に 共有する状況では、例えば V 族原子から III 族原子に 電子が供給されるので、必ず V 族電子は正に III 族原 子は負に帯電する。そのようにイオン性を帯びるため には余分なエネルギーを要するので、典型的な共有結 合は成立し得ない。

しかしながら、その余分なエネルギーは、B形の共 有電子軌道であればA形である場合よりも大幅に減少 すると、著者は考える。例えば、V族原子の電子軌道 がIII族原子を周回するA形軌道に丸ごと移るよりも、 (元の軌道と部分的に重なる)より低エネルギーのB形 軌道に移る方が容易だからである。その結果、III-IV 族化合物結晶の任意の六員環において、Fig.10-(i)に 示す各原子から2ヶずつの電子が結合に関与する状況 と、Fig.10-(ii)のようにIII族原子は1ヶ,V族原子は 3ヶの電子が関与する状況が重なって安定になろう^{†††}。

このイオン性の出現は II-VI 族化合物では一層著し くなって、A 形共有結合では 2 価の正イオン原子と負 イオン原子が隣り合うことになる。そのような状況で は、共有結合を行い得ないであろうと著者は予想する。 さらに、例えば III-V 族化合物の A 形共有結合では、 V 族原子が電子 2ヶを供給する III 族原子が定まる機

^{††} 基本の組み合わせが E_{g0} で、 E_g はより大きな軌道である。 ^{†††} Fig.1 縦軸 "Estimated Mobility" は、この伝導形態に応じ た m^* を用いた $\mu \propto 1/m^*$ の計算値である (Si の μ_e を基準)。 [†] 下付き $_M$ は半径の"平均"を意味している。

^{+†} *R_{rate}* は基本的に 1 である。間接遷移型半導体の InAs と InSb だけが 1 と異なる (Table 4 の 6 行目参照)。

⁺⁺⁺ 実際には、(i) と(ii) が重なった軌道には2×6 = 12ヶの軌 道が存在して、この軌道平面に直交する方向に各々の原子を通 る2ヶずつ(i),(ii) 様の軌道が存在する。II-VI 族化合物では、 両方の六員環の半数ずつが1ヶあるいは3ヶの電子を供給する。

Table 6. 間接遷移型/直接遷移型 半導体の区分例.

遷移型	#	族 構成	E _g に対する対発生形態 (自由電子+正孔)	Al(X)	Ga(X)	In(X)
問坛	i	IV, IV-IV	多数が可能 (B-A, B-B, C-B, C-C,)	_	_	_
間接	ii	III-V	B-A 形のみ可能	P, As, Sb	Р	_
直接	iii	III-V, (II-VI)	B-B 形のみ可能 (例外的に C-C, D-D)	Ν	N, As, Sb $$	N, P, As, Sb
間接遷移	刑坐	道休 (;) にけダ	イヤチンド Si Co SiC が今まれる AI(X)	<u> </u>	P As Sh	室の元表を示す

Fig. 11. 直接遷移型半導体の再結合速度と発光量.

構が存在しない訳なので、安定な結晶を構築できない と思われる。ところが、実際に III-V 族化合物や II-VI 族化合物が安定に存在しているのは、それらが B 形の 共有結合を行っているためであろうと、著者は考える。

IV-IV 族以外に III-V 族と II-VI 族化合物だ けが実際に存在するのは、それらだけが (B 形の) 共有結合をし得る為であると考える。

なお、B形の電子軌道を構成する六員環構造は、Fig.6 の diamond 形やそれと同形の閃亜鉛鉱形だけでなく、 歪な形ではあるがウルツ鉱形でも存在している[†]。

7. 遷移型による再結合,発光特性の違い

間接遷移形と直接遷移形の半導体は Table 6 のよう に区分できよう。特に、4 行目 (iii) 欄の歪な化合物群 が、再結合がもっぱら B-B 形に限られることで高輝度 発光特性を示すと、著者は判断する。

自由電子と正孔の再結合する際には、両者の軌道形 態が同じ場合に限って発光を伴うと、著者は考える。 さらに、最も明るく発光する再結合は A-A 形で、次 が B-B 形だが、C-C 形の発光は弱く、B-C 形等の異 形組み合わせの発光はさらに弱いと推定する。

直接遷移型に分類される半導体は、結晶が歪である 為に異なる軌道形態間の再結合は元より、C-C形の再 結合さえも起こり得ず、A-B形とB-B形だけが起こ り得るものと著者は推定する (Fig.11)。

間接型半導体は、再結合/対発生に対する融通性が

Fig. 12. 間接遷移型半導体の再結合速度と発光量.

高く、これら多くの再結合形態が存在し得るのであろ うと、著者は推定する。すると、それよりも小さなエ ネルギーの再結合で大半のエネルギーが費やされるた めに、(可視光で)強く発光する B-B 形の再結合によ る発光量は大幅に減少しよう (Fig.12)。

なお、電子を引き寄せる強さを示す電気陰性度は周 期表の列番号が増すほど大きいので、どの III-IV 族半 導体の III 族原子の値は IV 族原子よりも大きい。そ して、Table 7 に示すように、高輝度 LED に適した GaN, InN はこの違いが大きく、逆に間接遷移型半導 体に分類される AIP, AlAs, AlSb, GaP は小さい。

また、直接遷移型半導体は第4周期以上の元素から 構成されるのに対して、同じ III-V 族半導体でも間接 遷移型は第3周期までの元素から成っている傾向が、 この Table から認められる^{††}。ちなみに、III-V 族の 間接遷移型半導体では自由電子のドリフト移動度 μ_e が際立って小さい (Table 3 を参照)。

なお、GaP 等の (間接遷移型の) 化合物で非発光な のは、結晶がさらに歪なので、B-B 形の再結合さえも 十分に出来ずに^{†††}、B-A 形等の非正規な非発光性の 再結合しか起こり得ない為であろう。

8. 間接型半導体と直接型半導体の新しい解釈

先節の後半に述べた電気陰性度の傾向は、共有結合 の為には V 族原子が III 族原子に余分に電子を供給せ ねばならないのだから当然である^{†††}。さらに、結晶

[†]これらの結晶構造については付録を参照されたい。本来、共 有結合する六員環はベンゼン環がそうであるようにほぼ平面構 造になるが、ウルツ鉱形結晶では平面からの歪みが大きい。

^{††} さらに、間接遷移型では、III 族よりも V 族原子の周期が大 きい傾向も窺える。

^{†††} それは、自由電子のドリフト移動度 μe が極端に小さいこ とに如実に現れている (Table 3 の右側を参照)。

^{††††} また、周期の違いについては、周期が増えると原子半径も

Table 7. 主要半導体の構成元素の電気陰性度と周期番号.

	電	気陰性	度	周期	钥表	の行	
	С	а	c-a	c'	a'	c'-a'	Α
直接遷	多型半	₩導体					
GaN	1.6	3	-1.4	4	2	2	-3.4
GaAs	1.6	2	-0.4	4	4	0	-0.4
GaSb	1.6	1.9	-0.3	4	5	-1	0.7
InN	1.7	3	-1.3	5	2	3	-4.3
InP	1.7	2.1	-0.4	5	3	2	-2.4
InAs	1.7	2	-0.3	5	4	1	-1.3
InSb	1.7	1.9	-0.2	5	5	0	-0.2
間接遷	移型半	∶ ≚導体	:				
SiC	1.8	2.5	-0.7	3	2	1	-1.7
AIP	1.5	2.1	-0.6	3	3	0	-0.6
AlAs	1.5	2	-0.5	3	4	-1	0.5
AlSb	1.5	1.9	-0.4	3	5	-2	1.6
GaP	1.6	2.1	-0.5	4	3	1	-1.5
単一元	素半導	算体	0			0	0
					A =	(c-a) -	(c'-a')

構造が歪である III-V 族半導体のドリフト移動度 μ_e , μ_h は本来小さいのだが、周期表の列の大きい元素は 金属的になる傾向があるので特に μ_e が大きく成り得 て、そのような半導体が直接遷移型と分類されている と解釈するのが自然であると考える。

そもそも、半導体に間接型と直接型の2種類がある ことは、第二次世界大戦中に赤外線検知器用の光伝導 素子としてエネルギー ギャップ E_g の小さい半導体が 研究された際に、電気伝導率の温度特性から求めた通 常の活性化エネルギー (すなわち、エネルギー ギャッ プ E_g)と光誘起電流の伝導率から求めた E_g が異なっ ていたことが発端である。これらの E_g は InSb 等で は一致したが、PbS, PbSe, PbTe 等では一致しなかっ たのである。価電子帯の最大エネルギー点と伝導帯の 最小エネルギー点の一致/不一致は、その現象の後付 け説明として提起されたものと、著者は予想する。

結局、半導体は、Table 6 に示すように、2 種類の 間接遷移型と1 種類の直接遷移型に区分し得ると著者 は考える。それぞれの遷移型は次のように特性付ける ことが出来る。

- 間接遷移型-i. 典型的な半導体は、Fig.12 に示すような、広いエネルギー領域に渡る再結合特性を示す。 それには、広く非発光特性部も含まれる。
- **間接遷移型-ii.** Fig.11 に破線で示した"再結合速度-2"のように、特定エネルギーでの再結合量が小さく, しかも裾を引く場合には、上記 (II.) よりも (I.) の 特徴が現れる。その場合には結晶の歪さも (II.) よ りも酷いであろうから、正孔だけでなく自由電子の ドリフト移動度 μ_e も低下する。これが、間接遷移

型に分類される III-V 族半導体 (AlP, AlAs, AlSb 等) の状況であろう。

直接遷移型いわゆる直接遷移型半導体は、Fig.11の ように特定のエネルギー近傍の再結合速度が特出し て大きい。それは、歪ではあるが一定の良好な結晶 性を有する場合に特例的に現れる[†]。

付 録

1. 共有結合の歪さと構成原子のイオン性

結晶の共有結合性は、(1.)結晶構造の歪さや、(2.) 構成原子の半径や電気陰性度の違いに因って阻害され よう。すなわち、diamond構造だけが共有結合を完全 に行い得る結晶形態で^{††}、それよりも構造の対称性が 悪いウルツ鉱形や異種原子から構成される閃亜鉛鉱形 の結晶では、それは望めない。

ウルツ鉱形の GaN, InN, 4H-SiC だけでな く、閃亜鉛鉱形の GaAs においても、イオン 性が存在する。その原因を、よく云われてい る様に構成原子の電気陰性度の違いに帰する ことには疑問がある。なぜなら、Si と C の Pauling の電気陰性度は 1.8 と 2.5 で比較的 大きいのだが^{†††}、SiC のイオン性は僅かで あると言われている。さらに、3C-SiC にイ オン性があるとは思えない。 著者は、半導体を構成するような IV 族近傍 の原子群では、原子同士が先ず共有結合を行

おうとする特性を有しており、その結果、電 子軌道の分布が変わることに因ってイオン性 が生じると見なすのが自然であると考える。

Table 8 と Table 9 に、主な間接遷移型半導体と直接 遷移型半導体の構成原子の周期, 共有結合半径と結晶構 造を示す。Figure 13 には Wurtzite(ウルツ鉱) 形結晶 の構造を示す^{††††}。Figure 2~Fig.4 に示すダイヤモン ド構造よりも余程複雑であることが判る。結晶構造は、 diamond 形, Zinc Blend(閃亜鉛鉱) 形 ^{†5}, Wurtzite

^{†5} 閃亜鉛鉱形は、diamond 形結晶を構成する原子を一つ置き に異原子に置き換えた構造である。diamond 形と閃亜鉛鉱形は

増える傾向にあるので、III 族原子の外側に B 形の電子軌道が 加わり易い為と考えることが出来よう。

[†]結晶の歪さは、まず μ_h が小さいことに現れよう。 ^{††} グラフェンや C₆₀ も完全な共有結合結晶と言える。 ^{†††} ちなみに、GaAs の電気陰性度は 1.6 と 2.0 である。 ^{†††} ウルツ鉱構造の基本構造 (A), (B) は、大小の円で示す異 なる原子が (イオン性を有する為に) 細線で示す位置で上下に揃 う (ちなみに、diamond 構造では隙間に入るようにずれる)。そ して、(A) と (B) は互いに左右反転した構造をしている (お互 いに対して 60°水平回転した構造とも言える)。(A) あるいは (B) ばかりが積み上がると 2H 構造になって、(-A-B-A-B-...) と 交互に重なると 4H 構造、そして (-A-A-B-A-A-B-...) あるいは (-B-B-A-B-B-A-...) となったものが 6H 構造である。

半導体	Dia.	4H-SiC	3C-SiC	Si	AlP	GaP	AlAs	Ge	AlSb	Sn
族	IV	IV-IV	IV-IV	IV	III-V	III-V	III-V	IV	III-V	IV
周期	2	3+2	3+2	3	3+3	4+3	3+4	4	3+5	5
結晶形	dia.	Wurt.	Z.B.	dia.	Z.B.	Z.B.	Z.B.	dia.	Z.B.	Wurt.
$r_c \ (pm)$	77	117	117	117	126	126	126	122	126	140
$r_a \ (pm)$	-	77	77	-	110	110	118	-	136	-
$r_{ave.} (pm)$	77	97	97	117	118	118	122	122	131	140
					better and the state					

Table 8. 主な間接遷移型半導体の構成原子の周期, 半径と結晶構造.

Table 9. 主な直接遷移型半導体の構成原子の周期, 半径と結晶構造.

半導体	GaN	InN	GaAs	InP	GaSb	InAs	InSb
族	III-V	III-V	III-V	III-V	III-V	III-V	III-V
周期	4+2	5+2	4+4	5+3	$^{4+5}$	5+4	5+5
結晶形	Wurt.	Wurt.	Z.B.	Z.B.	Z.B.	Z.B.	Z.B.
$r_c \ (pm)$	126	144	126	144	126	144	144
$r_a \ (pm)$	70	70	118	110	136	118	136
$r_{ave.} (pm)$	98	107	122	127	131	131	140

結晶形: dia.=diamond 形, Z.B.=Zinc Blend(閃亜鉛鉱) 形, Wurt.=Wurtzite(ウルツ鉱) 形.

Fig. 13. ウルツ鉱構造の基本要素.

形の順に歪になる。

また、化合物の構成原子の周期の差や半径の差が大 きいほど、歪になると予想される^{†6}。ちなみに、Table 8 と Table 3、そして Table 9 と Table 4 を比べると、 歪さが大きいほど、自由電子に対する正孔のドリフト 移動度の比率 μ_h/μ_e が小さくなっている。

同じ III-V 化合物半導体でも、発光特性やヘテロ積 層構造[†]での特色を発揮している GaN や InN は歪さ

が大きく、直接遷移型半導体に分類される AlP, GaP, AlAs, AlSb 等は歪が比較的に少ないことが窺える。そ のことが、Fig.11 に破線で示した"再結合速度-2"の ような裾を引く特性をもたらしているのかも知れない。

文 献

結晶形: dia.=diamond 形, Z.B.=Zinc Blend(関亜鉛鉱) 形, Wurt.=Wurtzite(ウルツ鉱) 形. $r_c \ge r_a$ は化合物 CA を構成する原子 C と A の共有結合半径で, その平均値が $r_{ave.}$ である.

立方晶であるが、ウルツ鉱形結晶は六方晶である。

^{†6} 勿論、II-VI 化合物結晶は、III-V 化合物よりも歪である。 [†] ピエゾ効果と構成原子の大きなイオン性の違いが、ヘテロ境 界層に高い密度の電荷を生じると言われている。

 ⁽¹⁾ 高田 育紀、"半導体における有効質量の再考察 -そもそも質量 とは何か-、"H28 電気学会研究会資料、EDD-16-62/SPC-16-149、pp.93-98、2016-11-14.

 ⁽²⁾ 高田 育紀,パワーデバイスの基礎 第 II 部 半導体中の物理現象(第2版),§7.1 "共有結合での電子軌道",東工大 "パワーデバイス特論"講義資料,2017-05.