Neutron Transport Theory Lecture Note (5)

- One-speed diffusion theory of a nuclear reactor (1) -

Toru Obara
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5. One-speed diffusion theory of a nuclear reactor
5.1 The time-dependent "slab" reactor
(a)Solution of diffusion equation
Considering a uniform slab of fissile material characterized by cross sections
Y., 2 2 (Slab reactor)

One-speed diffusion equation

10 92
;a—qt) - Da_X(f + an)(X, t) = VZf(I)(X, t) (1)

Initial condition

¢ (x,0) = po(x) = do(—x)  (symetric) e (2)
Boundary conditions
a a
o(31) =0 (~31) =0 (3
A solution of the form (separation variables)
¢ 1) =YE)T® - (4)

Substituting Eq.(4) to Eq.(1) and dividing by {(x)T(t)

1dT_vf & s £)W()| = constant = -2 - (5)
Tdt ¢ dx2

hence
% = —AT(b) = (6)
DY 4 wx— w60 = -2y ()

Solution of the time-dependent Eq.(6)
T(t) = T(0)e™2t -+ (8)
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Space dependent equation

a2y /A
DW'F(;'FVEf—Za)lIJ(X) =0 (9)

Boundary condition

ERIER

here A i1s still to be determined.

Considering the eigenvalue problem.

d2y

dx2

=0 - (11)
AR

We are interested in symmetric solutions since ¢y(x) is symmetric.

+ B U (®)

eigen functions : yr,(x) = cOS B,x

Nty 2
eigenvalue : B,2= (?) . n=135"" - (12)

If we identify Eq.(9) as the same problem, we must choose
A=vZ,+vDB, > —wI=1,. n=135 - (13)

A, : time eigenvalues

General solution of Eq.(1),

dx,t) = Z Anexp(—?\nt)cos? - (14)

odd

The solution satisfies the boundary conditions. From initial condition Eq.(2),

¢(x,0) = o(x) = Ancos? -+ (15)
odd

Using orthogonality,
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A 2 Zd nTx 16
1) s beIcos (16)

Thus

peD =Y I§

odd

dx'do (x")cosByx' [ exp(—Ayt) - cosByx - (17)

NI

2

where the time eigenvalues A, are given by

nT

A=vI, + vDB > — v B, = = -+ (18)
(b)Long time behavior
From Eq.(12)
2 2 coe g2 (0T’
B, <B3’< <Bn—(5) (19)
hence from Eq.(18)
}\1 < }\3 < )\5 (20)

This means that the modes (terms in Eq.(17)) corresponding to larger n decay out

rapidly in time.

as t— o
b (x,t)~A; exp(—A, t) cosB;x - (21)

(fundamental mode)

This shows the regardless of the initial shape ¢4(x) the flux will decay into the
fundamental mode shape.

It is usual to refer the value of B,* characterizing this model as

2 ™2 5, ) )
B, = (—) = B,” = geometric buckling - (22)
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Thus nomenclature is used since B, is a

measure of the curvature of the mode shape
an - - idzwn

Un dx?

(c)Criticality condition
What is required to make the flux distribution in the reactor time-independent
1.e. what is required to make the fission chain reaction steady-state

We will define this situation to be that of reactor criticality :

Criticality =
when a time-independent neutron flux can be sustained in the reactor

(in the absence of sources other than fissions)

The general solution of the flux

d(x,t)=A, exp(—A,t) cosB;x + Z A, exp(—A,t) cosBpx -+ (23)
n=3

odd

It is evident that requirement for a time-independent flux is just that the fundamental
eigenvalue vanish.

=0 =v(Z, — vi) + vDB,;? - (24)
since then higher modes (n=3,5,) will have negative —A, and decay out in time,
leaving just,

d(x,t) > AjcosB,; # function of time

From Eq.(24), using notation B;* = Bg2

Bm =B’ (criticality condition) -+ (25)

where, B l=—2 (material buckling) -+ (26)

To achieve a critical reactor, we must either adjust the size (Bgz) or the core

composition (By,?) such that By’ = B,

Copyright © 2016 Toru Obara All Rights Reserved.



we also note,
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=

=

super critical

critical

sub critical

d(x,t) = Ajexp(—Aqt) - cosBgx



