Matching

I. Overview

- Players divided into two distinct groups. This also was the case for assignment games discussed before with buyers and sellers.
- Objective is to form pairs consisting of one player from each group. \rightarrow stable matchings (\approx core)
- Unlike assignment games: no side-payments are allowed - remove the transferable utility (TU) assumption
- Goal: to find stable matchings and their properties
- Original model from Gale and Shapley (1962).
II. One-to-one Matching Market: Setup and Definitions
- $N=M \cup W$ the set of agents where $M \cap W=\emptyset$.
- $M=\left\{m_{1}, m_{2}, \cdots, m_{p}\right\}$ is called the set of men and $W=\left\{w_{1}, w_{2}, \cdots, w_{q}\right\}$ the set of women.
- Each $m \in M$ has strict preferences over $W \cup\{m\}$, denoted by \succ_{m}.
- Strict: For $j, k \in W \cup\{m\}$, either $j \succ_{m} k$ or $k \succ_{m} j$.
$-w \succ_{m} m$: m prefers w over being single (denoted by the outcome that m is matched to himself). Such w is said to be acceptable to m.
- Each $w \in W$ also has strict preferences over $M \cup\{w\}$, denoted by \succ_{w}. An acceptable m for w can be similarly defined.
- $\left(M, W,\left(\succ_{i}\right)_{i \in M \cup W}\right)$ define a (two-sided) matching market.

Definition. A matching is a one-to-one function $\mu: M \cup W \rightarrow M \cup W$ such that

- $\mu(m) \in W \cup\{m\}$ for all $m \in M$ and $\mu(w) \in M \cup\{w\}$ for all $w \in W$,
- $\mu(\mu(i))=i$ for all $i \in M \cup W$.
- Let \mathcal{M} denote the set of all matchings.
- Define the relation \succeq_{i} to be such that $j \succeq_{i} k$ if $j \succ_{i} k$ or $j=k$.
- A matching μ is said to be individually rational if $\mu(i) \succeq_{i} i$ for all $i \in M \cup W$. That is, a matching assigns to each i that is acceptable or i is single.
- A pair (m, w) forms a blocking pair of matching μ or blocks a matching μ if

$$
m \succ_{w} \mu(w)
$$

and

$$
w \succ_{m} \mu(m)
$$

Definition. A matching μ is stable if it is individually rational and there does not exist a pair $(m, w) \in M \times W$ that blocks it.

- A stable matching always exists in a matching market. Below is an algorithm, given by Gale and Shapley (1962), to find a stable matching.

M-proposing DA Algorithm (One-to-one Case)

(Step 1.a) Each man $m \in M$ proposes to $w \in W$ whom he likes the most among those acceptable to m. If no such $w \in W$ exists, m is matched to himself.
(Step 1.b) Each woman $w \in W$ chooses the most preferred $m \in M$ who proposed to w and is acceptable and rejects all other men who have proposed to her. In such a case, m and w are tentatively matched to each other.
(Step $k . a$) Each man $m \in M$ proposes to $w \in W$ whom he likes the most among those acceptable to m and who has not rejected m at an earlier step. If no such $w \in W$ exists, m is matched to himself.
(Step $k . b$) Each woman $w \in W$ chooses the most preferred $m \in M$ who proposed to w and her tentative partner and rejects all other men. In such a case, m and w are tentatively matched to each other.

- A version of the DA algorithm where women propose and men choose whether to accept or not - W-proposing algorithm
- The DA algorithm (regardless of who proposes) yields a stable matching.
- Let μ be the matching obtained in the above algorithm. If μ were not stable, there would exist m and w such that $w \succ_{m} \mu(m)$ and $m \succ_{w} \mu(w)$.
$-w \succ_{m} \mu(m)$ implies m must have proposed to w at some step.
- However, m is rejected by w (otherwise, they would be matched together in $\mu)$ at some point, where then w chooses some m^{\prime} with $m^{\prime} \succ_{w} m$.
- w 's final partner cannot be someone preferred less to m^{\prime} so that $\mu(w) \succeq_{w}$ $m^{\prime} \succ_{w} m$, which contradicts $m \succ_{w} \mu(w) .\left(\succeq_{w}: \succ_{w}\right.$ or $\left.=\right)$
- The M-proposing DA algorithm yields the M-optimal matching, labeled by μ^{M}. That is, if μ is any stable matching, then

$$
\mu^{M}(m) \succeq_{m} \mu(m) \forall m \in M
$$

- A woman $w \in W$ will be called achievable to m if there exists a stable matching that matches w to m. Therefore, it is sufficient to show that in the DA algorithm, any man $m \in M$ will not be rejected by w who is achievable to m.
- Let k be the first step in which a man $m \in M$ is rejected by some $w \in W$ who is achievable to m.
- For w to reject m, m must be unacceptable $\left(w \succ_{w} m\right)$ or w is tentatively assigned to some $m^{\prime} \in M$ with $m^{\prime} \succ_{w} m$.
- Let μ be a stable matching such that $\mu(m)=w$. Goal is to show (w, m^{\prime}) forms a blocking pair, which is a contradiction to μ being stable.
- Who is $\mu\left(m^{\prime}\right)$? - Let $w^{\prime}=\mu\left(m^{\prime}\right)$. This w^{\prime} must be achievable to m^{\prime}, and it cannot be the case that $w^{\prime} \succ_{m^{\prime}} w$. Otherwise, m^{\prime} must have proposed to w^{\prime} before proposing to w but was rejected by w^{\prime} at a step earlier than k. This contradicts how k was defined.
- Therefore, $w \succ_{m} w^{\prime}=\mu\left(m^{\prime}\right)$ (since $w \neq w^{\prime}$). Recall that $m^{\prime} \succ_{w} m=\mu(w)$. Therefore, $\left(m^{\prime}, w\right)$ forms a blocking pair.
- A stable matching is also immune to coalitional deviations so that it is a "core" matching - similar result to the simplification of the conditions in the core of the assignment game. (Homework)
III. Mathematical Properties of Stable Matchings

Theorem 1. (Lattice Theorem) Let μ and μ^{\prime} be two stable matchings. Define λ and ν by

$$
\begin{aligned}
& \lambda(m)=\max _{\succ_{m}}\left\{\mu(m), \mu^{\prime}(m)\right\}, \lambda(w)=\min _{\succ_{w}}\left\{\mu(w), \mu^{\prime}(w)\right\} \\
& \nu(m)=\min _{\succ_{m}}\left\{\mu(m), \mu^{\prime}(m)\right\}, \nu(w)=\max _{\succ_{w}}\left\{\mu(w), \mu^{\prime}(w)\right\}
\end{aligned}
$$

where the max operation is defined in the following way:

$$
\max _{\succ_{m}}\{X, Y\}= \begin{cases}X & \text { if } X \succeq_{m} Y \\ Y & \text { if } Y \succ_{m} X\end{cases}
$$

and min and operations with respect \succ_{w} are defined similarly. Then λ and ν are both stable matchings. (It is not trivial that these functions λ and ν need be matchings.)

- Because the set of matchings is finite, an immediate corollary of the above result is the following.

Corollary. (Coincidence of Interest) There exists an M-optimal and W-optimal matching.

- The next result shows that agents in M and W are opposites regarding to their preferences of one stable matching to another.

Theorem 2. (Conflict of Interest) Let μ and μ^{\prime} be two stable matchings such that $\mu(m) \preceq_{m} \mu^{\prime}(m) \forall m \in M$. Then, $\mu(w) \succeq_{w} \mu^{\prime}(w) \forall w \in W$.

- Finally, the last property, called the Rural Hospital Theorem, states that those who are not matched in one stable matching is not matched in any other stable matching.
- The name comes from the matching between interns and hospitals - rural hospitals are unpopular, and theorem shows that as long as matchings are stable, rural hospitals still are unpopular.

Theorem 3. (Rural Hospital Theorem) Let μ be a stable matching and $i \in$ $M \cup W$ such that $\mu(i)=i$. Then, for any stable matching $\mu^{\prime}, \mu^{\prime}(i)=i$.

IV. A Related Problem: Roommate Problem

- In the previous model - restriction of matching between men and women. Two men or two women could not form pairs.
- Roommate problem - no such restriction - any two players can form a pair.
- N : the set of players
- Each $i \in N$ has preferences (denoted by \succ_{i}) over N.
- A matching μ in the roommate problem is a one-to-one function from N to itself that satisfies $\mu(\mu(i))=i$ for each $i \in N$.
- Individual rationality is defined in the same way as in the matching problem.
- A pair $(i, j) \in N \times N$ is said to block a matching μ if the following hold:

$$
j \succ_{i} \mu(i) \text { and } i \succ_{j} \mu(j)
$$

- A matching μ is said to be stable if it is individually rational and not blocked by any pair (i, j).
- Unlike the two-sided matching problem, a stable matching (defined later) may not exist. (See Example below)

Example: $N=\{1,2,3,4\}$ and preferences are given by the following.

$$
\begin{aligned}
& 1: 2 \succ_{1} 3 \succ_{1} 4 \\
& 2: 3 \succ_{2} 1 \succ_{2} 4 \\
& 3: 1 \succ_{3} 2 \succ_{3} 4 \\
& 4: 1 \succ_{4} 2 \succ_{4} 3
\end{aligned}
$$

There is no stable matching for this problem.

- Matching problems are special cases of roommate problems. Therefore, roommate problems are broader.
- The following results, which are known to hold for matching markets, also hold for roommate problems.

Theorem 2'. (Conflict of Interest, Roommate Version)
Let μ and μ^{\prime} be two stable matchings in the roommate problem. Let $i \in N$ be such that $\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, for $j=\mu(i), \mu^{\prime}(j) \succ_{j} \mu(j)$.

Theorem 3'. (Lone Wolf Theorem) Let μ be a stable matching and $i \in N$ be such that $\mu(i)=i$. Then, for any stable matching $\mu^{\prime}, \mu^{\prime}(i)=i$.

- Proof of the above two theorems given using the techniques of Klaus and Klijn (2010).

References

Gale, D. and L. S. Shapley (1962). College admissions and the stability of marriage. American Mathematics Monthly 69, 9-15.

Klaus, B. and F. Klijn (2010). Smith and Rawls share a room: stability and medians. Social Choice and Welfare 35, 647-667.

