
Matching

I. Overview

• Players divided into two distinct groups. This also was the case for assignment

games discussed before with buyers and sellers.

• Objective is to form pairs consisting of one player from each group. → stable

matchings (≈ core)

• Unlike assignment games: no side-payments are allowed – remove the transferable

utility (TU) assumption

• Goal: to find stable matchings and their properties

• Original model from Gale and Shapley (1962).

II. One-to-one Matching Market: Setup and Definitions

• N = M ∪W the set of agents where M ∩W = ∅.

• M = {m1,m2, · · · ,mp} is called the set of men and W = {w1, w2, · · · , wq} the set

of women.

• Each m ∈ M has strict preferences over W ∪ {m}, denoted by ≻m.

– Strict: For j, k ∈ W ∪ {m}, either j ≻m k or k ≻m j.

– w ≻m m: m prefers w over being single (denoted by the outcome that m is

matched to himself). Such w is said to be acceptable to m.

• Each w ∈ W also has strict preferences overM∪{w}, denoted by≻w. An acceptable

m for w can be similarly defined.

• (M,W, (≻i)i∈M∪W ) define a (two-sided) matching market.

Definition. A matching is a one-to-one function µ : M ∪W → M ∪W such that

• µ(m) ∈ W ∪ {m} for all m ∈ M and µ(w) ∈ M ∪ {w} for all w ∈ W ,

• µ (µ(i)) = i for all i ∈ M ∪W .

• Let M denote the set of all matchings.
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• Define the relation ⪰i to be such that j ⪰i k if j ≻i k or j = k.

• A matching µ is said to be individually rational if µ(i) ⪰i i for all i ∈ M ∪W .

That is, a matching assigns to each i that is acceptable or i is single.

• A pair (m,w) forms a blocking pair of matching µ or blocks a matching µ if

m ≻w µ(w)

and

w ≻m µ(m).

Definition. A matching µ is stable if it is individually rational and there does not

exist a pair (m,w) ∈ M ×W that blocks it.

• A stable matching always exists in a matching market. Below is an algorithm, given

by Gale and Shapley (1962), to find a stable matching.

M-proposing DA Algorithm (One-to-one Case)

(Step 1.a) Each man m ∈ M proposes to w ∈ W whom he likes the most among

those acceptable to m. If no such w ∈ W exists, m is matched to himself.

(Step 1.b) Each woman w ∈ W chooses the most preferred m ∈ M who proposed to

w and is acceptable and rejects all other men who have proposed to her. In such a

case, m and w are tentatively matched to each other.

· · ·

(Step k.a) Each man m ∈ M proposes to w ∈ W whom he likes the most among

those acceptable to m and who has not rejected m at an earlier step. If no such

w ∈ W exists, m is matched to himself.

(Step k.b) Each woman w ∈ W chooses the most preferred m ∈ M who proposed to

w and her tentative partner and rejects all other men. In such a case, m and w are

tentatively matched to each other.

• A version of the DA algorithm where women propose and men choose whether to

accept or not – W -proposing algorithm

2



• The DA algorithm (regardless of who proposes) yields a stable matching.

– Let µ be the matching obtained in the above algorithm. If µ were not stable,

there would exist m and w such that w ≻m µ(m) and m ≻w µ(w).

– w ≻m µ(m) implies m must have proposed to w at some step.

– However, m is rejected by w (otherwise, they would be matched together in

µ) at some point, where then w chooses some m′ with m′ ≻w m.

– w’s final partner cannot be someone preferred less to m′ so that µ(w) ⪰w

m′ ≻w m, which contradicts m ≻w µ(w). (⪰w: ≻w or =)

• The M -proposing DA algorithm yields the M -optimal matching, labeled by µM .

That is, if µ is any stable matching, then

µM (m) ⪰m µ(m) ∀m ∈ M.

– A woman w ∈ W will be called achievable to m if there exists a stable

matching that matches w to m. Therefore, it is sufficient to show that in the

DA algorithm, any man m ∈ M will not be rejected by w who is achievable

to m.

– Let k be the first step in which a man m ∈ M is rejected by some w ∈ W who

is achievable to m.

– For w to reject m, m must be unacceptable (w ≻w m) or w is tentatively

assigned to some m′ ∈ M with m′ ≻w m.

– Let µ be a stable matching such that µ(m) = w. Goal is to show (w,m′) forms

a blocking pair, which is a contradiction to µ being stable.

– Who is µ(m′)? – Let w′ = µ(m′). This w′ must be achievable to m′, and it

cannot be the case that w′ ≻m′ w. Otherwise, m′ must have proposed to w′

before proposing to w but was rejected by w′ at a step earlier than k. This

contradicts how k was defined.

– Therefore, w ≻m w′ = µ(m′) (since w ̸= w′). Recall that m′ ≻w m = µ(w).

Therefore, (m′, w) forms a blocking pair.

• A stable matching is also immune to coalitional deviations so that it is a ”core”

matching – similar result to the simplification of the conditions in the core of the

assignment game. (Homework)

III. Mathematical Properties of Stable Matchings
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Theorem 1. (Lattice Theorem) Let µ and µ′ be two stable matchings. Define λ

and ν by

λ(m) = max
≻m

{µ(m), µ′(m)}, λ(w) = min
≻w

{µ(w), µ′(w)}

ν(m) = min
≻m

{µ(m), µ′(m)}, ν(w) = max
≻w

{µ(w), µ′(w)}

where the max operation is defined in the following way:

max
≻m

{X,Y } =

X if X ⪰m Y

Y if Y ≻m X

and min and operations with respect ≻w are defined similarly. Then λ and ν are both

stable matchings. (It is not trivial that these functions λ and ν need be matchings.)

• Because the set of matchings is finite, an immediate corollary of the above result is

the following.

Corollary. (Coincidence of Interest) There exists an M -optimal and W -optimal

matching.

• The next result shows that agents in M and W are opposites regarding to their

preferences of one stable matching to another.

Theorem 2. (Conflict of Interest) Let µ and µ′ be two stable matchings such

that µ(m) ⪯m µ′(m) ∀m ∈ M . Then, µ(w) ⪰w µ′(w) ∀w ∈ W .

• Finally, the last property, called the Rural Hospital Theorem, states that those

who are not matched in one stable matching is not matched in any other stable

matching.

• The name comes from the matching between interns and hospitals – rural hospitals

are unpopular, and theorem shows that as long as matchings are stable, rural

hospitals still are unpopular.
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Theorem 3. (Rural Hospital Theorem) Let µ be a stable matching and i ∈
M ∪W such that µ(i) = i. Then, for any stable matching µ′, µ′(i) = i.

IV. A Related Problem: Roommate Problem

• In the previous model – restriction of matching between men and women. Two

men or two women could not form pairs.

• Roommate problem – no such restriction – any two players can form a pair.

• N : the set of players

• Each i ∈ N has preferences (denoted by ≻i) over N .

• A matching µ in the roommate problem is a one-to-one function from N to itself

that satisfies µ(µ(i)) = i for each i ∈ N .

• Individual rationality is defined in the same way as in the matching problem.

• A pair (i, j) ∈ N ×N is said to block a matching µ if the following hold:

j ≻i µ(i) and i ≻j µ(j).

• A matching µ is said to be stable if it is individually rational and not blocked by

any pair (i, j).

• Unlike the two-sided matching problem, a stable matching (defined later) may not

exist. (See Example below)

Example: N = {1, 2, 3, 4} and preferences are given by the following.

1 : 2 ≻1 3 ≻1 4

2 : 3 ≻2 1 ≻2 4

3 : 1 ≻3 2 ≻3 4

4 : 1 ≻4 2 ≻4 3

There is no stable matching for this problem.

• Matching problems are special cases of roommate problems. Therefore, roommate

problems are broader.
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• The following results, which are known to hold for matching markets, also hold for

roommate problems.

Theorem 2’. (Conflict of Interest, Roommate Version)

Let µ and µ′ be two stable matchings in the roommate problem. Let i ∈ N be such

that µ(i) ≻i µ
′(i). Then, for j = µ(i), µ′(j) ≻j µ(j).

Theorem 3’. (Lone Wolf Theorem) Let µ be a stable matching and i ∈ N be

such that µ(i) = i. Then, for any stable matching µ′, µ′(i) = i.

• Proof of the above two theorems given using the techniques of Klaus and Klijn

(2010).
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