Basic Theory of Transferable Utility (TU) Games: Nucleolus
I. Overview
e In the previous lectures:

— TU game was defined.

— Several concepts were defined: imputation, core.
e Core, relatively simple concept, had two weaknesses or drawbacks:

— It could be empty.
— It could be too large.

e Two relatively popular solution concepts that are singleton:

— Nucleolus

— Shapley value
II. Definition of Nucleolus

o Let (IV,v) be a game and x € R™ and S C N. The excess of coalition S at z,
denoted by e(S, x), is defined by

e(S,x) =v(8) = > (1)

€S
where by convention e((),z) = 0 for all .

e Using this notation, the core is equivalent to the following.

C(N,v) ={z € X(N,v)le(S,z) <0VSC N} (2)

o Let © € R™. Define f(x) to be the vector of excesses associated with z in non-
increasing order. Because e(), z) = 0 and e(N,z) = 0 for any imputation z, these

two coalitions are excluded in this vector 8. That is,
0(z) = (61(z),02(z), - ,0an_s(x)) € R*' 2

where
01(x) > O2(x) > -+ Oan_o(x)

and each 0;(x) is associated with the excess of some coalition.



e Define the lexicographic ordering <;., on these vectors in the following way. For

two vectors a and b, a <j, b if either a = b or there exists a number k such that
—aq=buVle{l,2,--- Jk—1} and
— ay, < bg.

e The ordering <., is a partial ordering, and for every a,b € R", either a <j, b or
b <lex Q-

Definition. The nucleolus of a game (NN, v), denoted by N (N,v) is the set of
imputations x for which 0(z) is lexicographically minimum among all imputations.
Formally,

N(N,v) ={x € X(N,v)|0(x) <iex 0(y) Yy € X(N,v)} (3)

e One property of the nucleolus is that it is always a subset of the core if the core is

nonempty.

Proposition. Let (N,v) be a TU game such that the C(N,v) # 0. Then,

N(N,v) CC(N,v).

e Sketch of proof: Suppose that there exists an imputation z € N (IV,v) such that
x ¢ C(N,v), which implies that for some coalition S, e(S,z) > 0. Now, compare
0(x) to O(y) where y € C(N,v) to reach a contradiction.

III. Nonemptiness of the Nucleolus

e It can be shown that for any game (N, v), N (N,v) # 0, using Weierstrauss’ Theo-

rem.

e Note: For any coalition S C N, e(S,-) = v(S) — >_,cq®i is a continuous function

of z = (;)ien-

e To show that 6i(-) is a continuous function of = for each 1 < k < 2™ — 2/ the

following result is useful.



Proposition. For each 1 < k < 2" — 2,

0 (x) = i 4
H) = o (oG oy SR 5 0) @

e The interpretation of the right hand side of (4):

— The "min” operations picks the smallest (or k-th highest) excess of the k

coalitions in T with respect to x.

— In order to pick the k-th highest among all options — the "max” operation

e Because 0y () is defined by a finite number of max and min of continuous functions,

;. is a continuous function.

e To establish existence, consider the following series of optimization problems.

Problem 1. Find z € X (V,v) that solves the following:

i 0 5
peiin O1(@) (5)

Let X1 denote the set of imputations that solves Problem 1 (or (5)).

Problem k. Find x € X that solves the following:

min O (z) (6)

re€X)_1

Let X}, denote the set of imputations that solves Problem k& (or (6)).

e By Weierstrauss’s theorem, X; # () and compact since X (N,v) # () is compact and

0 is continuous.

e Continuing in this manner, X3 # () is compact for all k = 1,2,---,2" — 2. In
particular, () # Xon_o = N (N, ).

IV. The Nucleolus is a Singleton



e In Section III, it was established that N (N, v) # 0.

e In this section, it is shown that for every game (N, v), N (N, v) consists of only one

imputation.

Theorem. Let (N,v) be any TU game. If z,y € N (N,v), then z = y.

Below is a sketch of the proof of this statement. Suppose throughout that x,y € N and
x #y. Let 2 = (x 4+ y)/2. The objective is to show that 0(z) <je; 0(x).

1. 2,y € N = 0(x) = 0(y). That is, 6;(x) = 0;(y) for all | =1,2,---,2" — 2.

2. Let 1,59, -+, Son_o be the coalitions that give the excess values in 6(x). That is,
for each [

e(Si, ) = 0i(x)
3. Similarly define T4, Ts, -+ ,Ton_o for the excess values in 6(y). That is, for each [,

e(Ti,y) = 0i(y)

4. From how the coalitions S; and 7} were defined, there may be many ways to order
the S;’s and T;’s if, for example, consecutive entries in #(x) (and in 6(y) since
O(xz) = 0(y)) are equal. Therefore, reorder the S;’s and 7;’s such that the number
k that satisfies the condition below is maximized.

e S;=Tforalll <k-1
o S # T

Such a k must exist since x # y, so that there exists i« € N such that e({i},z) #

e({i}, v).

5. Note the following property of the excess (S, -) as a function of the imputation.

Lemma. Let S C N. Then, for any z,y € X and 0 < A < 1,

e(S,((1=XNz+Ay)) = (1—Ne(S,z) + Ae(S,y)

6. From the lemma, e(S), 2) = e(S;, x) + 2e(S1,y) = e(Si, ) = e(T},y) for | <k — 1,
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7. Now, consider the set of coalitions S = {S C Nle(S,z) = e(Sk,x)} and T = {T C
Nle(T,y) = e(Tk,y)}. Note the following facts.
e SAPand T #0
e SNT = () — otherwise, if S € SN T, then coalitions can be re-ordered,

contradicting how k was defined.

e Recalling that e(Sk,x) = Ok(x) = Ox(y) = e(Tk,y), for each S € S, e(S,z) >
e(S,y) and for T € T, e(T,y) > e(T, x).

e By definition of the sets S and T, e(S,z) = e(T,y) forall Se€ S, T € T.

8. Also, e(S,2) < e(S,z) for all S € S and e(T, z) < e(T,y) for all T' € T. Note also
that e(S, z) < e(S,x) < e(Sk—1,7) = e(Sk—1, 2).

9. Let R* be a coalition such that e(R*,z) = maxgr+g, .. 5, , €(R,z). Then, O,(2) =
e(R*,z) and e(R*, z) < e(S,x) = O(z) or e(R*, z) < e(T,y) = Oi(y).

10. Thus, 6(2) <jex 0(x) = 0(y), contradicting x,y € N.
V. Calculation of the Nucleolus — Overall Procedure and Examples

e One way to calculate the nucleolus can be calculated through solving a series of

linear programs.

Problem 1°. Find M and z € X that solves
min M (7)

subject to
e(S,z) < MVSCN,S#0,N

Let M’ denote the optimal value of (7). Let X| denote the set of imputations that
satisfies the constraints under M’. If X{ = {z} (a singleton), then x is the nucleolus.
Let Sy = {S € 2N\ {N,0}|e(S,x) = M’} and let S| = Sp\ S1 where Sy = 2V \ {0, N}.

Problem k. Find z € X]_, and M, that solves the following:

min M, (8)




subject to
e(S,x) < M VS eS8,

Let X, denote the set of imputations that solves Problem k (or (8)) and M] be the
solution to (8).

Continue until X, is a singleton.

Example 1:
N ={1,2,3}

v({1,2,3}) = 10
v({1,2}) = 4,0({1,3}) = 3,0({2,3}) = 8
v({1}) =v({2}) =v({3}) =0

Set up the first problem as follows:
min M

subject to
4 — (1‘1 + 9
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Because x € X, there is also the condition 1 + 2 + 3 = 10. By using this condition,

the first three inequalities can be rewritten as follows:

—6+x3< M
—T4+ax< M
2411 <M



Rearraging the inequalities leads to the following.

—M<zx1<M+2
M <xo <M+T7T
M <x3s<M+6

Also, by the restriction x; + x2 + x3 = 10, the following also needs to be satisfied (from

the above inequalities):
—3M < ($1+$2+$3) =10<3M + 15

The minimum M such that the inequalities hold without contradiction is M = —1,
which is the excess of the coalitions {2,3} and {1}. This yields x; = 1 with z9 and z3
still undetermined except for 1 < xo <6 and 1 < x3 < 5, so the process continues.

Now, substitute 1 = 1 whereever they appear, delete the inequalities corresponding
to {2,3} and {1}, and let M’ be the next highest excess value. The second problem is as

follows:

min M’
subject to
3—axo < M
2—x3< M
—X9 SM’
—$3§M/

Using the fact that xo + x3 = 10 — 21 = 9, the following set of inequalities, with respect

to zo can be obtained:
—M' +3<zy <M +7
The minimum M’ is M’ = —2, and x5 = 5, implying x3 = 9 — 2o = 4. Because, the only

x that satisfies the inequalities with M’ = —2 is (1, 5,4), the resulting vector (1,5,4) is

the nucleolus. O

Example 2:



Consider a TU game with N = {1,2,3} and v given by

1 if 9] >2

0 otherwise

The minimization problem to consider is given by
min M

subject to

Using the same technique as Example 1, we obtain the following

—M<z1 <M
—M<zo <M
—M<z3<M

Also, by the restriction 1 + z2 + x3 = 1, the following also needs to be satisfied (from
the above inequalities):
—3M <1<3M 9)

The condition M > 1/3 is the strongest condition. Thus, M = 1/3. Note that one of the
inequalities in (9) is used. Plugging M back into the inequalities yields

~1/3<® <1/3
—1/3< 3, <1/3
~1/3<x3<1/3

The only (71,2, z3) that satisfies the above and is also an imputation is (1/3,1/3,1/3),



which must be the nucleolus.

Example 3 (Calculation using Excess Vectors and Definition of the Nucleolus):
Consider a voting game with players N = {1,2,3} such player 1 and player 2 are veto
players. Formally, the TU game is given by N and the function v defined by

v(N) = v({1,2}) = 1
v(S) =0, S# N,{1,2}.
From the previous lecture notes, the core is given by the following set:
C(N,v) = {(a,1 —,0) € R®*|0 < a < 1}.

Thus, the nucleolus must be of the form (a, 1 — «,0) for 0 < o < 1. Consider the case in

which @« > 1 — « and let y = (a,1 — «,0). Then, the excess vector of y is
O(y) = (0,0,—(1 — a),—(1 — o), —a, —a).
and for the case in which 1 — a > «,
O(y) = (0,0, —a, —a, —(1 — ), — (1 — «)).
This vector is at its lexicographic minimum if & = 1/2. Thus, the nucleolusis (1/2,1/2,0).

VI. Related Concepts — Least Core and Prenucleolus

e It is known that if C # 0, then v € C. However, the core can be empty in some

games.

e Let X* be the set of vectors of R"™ that satisfies group rationality. That is,

X*(N,v) ={z € R"| Zm =ov(N)}
1EN

An element x € X* is called a preimputation, and X* is called the set of preim-

puatations.

e For ¢ € R, define the e-core, C.:

Ce(N,v) ={z € X*(N,v)le(S,z) <e,VS C N}



When € = 0, C. = C. Moreover, for ¢ < &, then C. C C...
There exists ¢ large enough such that C. # ().

Define the least core, LC of (N,v) by

Le= () ¢

€,Cc 20

By definition, £C # 0.

The definition of the least core (10) can be rewritten as the following:

£C = C.,

where

o =min max e(S5,)
z€X SCN,S#0

(11)

The prenucleolus of (N,v) is the set of x € X*(V,v) such that there is no y €

X*(N,v) such that 0(y) <jer 0().
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