I. Overview

- In the previous lectures:
- TU game was defined.
- Several concepts were defined: imputation, core.
- Core, relatively simple concept, had two weaknesses or drawbacks:
- It could be empty.
- It could be too large.
- Two relatively popular solution concepts that are singleton:
- Nucleolus
- Shapley value

II. Definition of Nucleolus

- Let (N, v) be a game and $x \in \mathcal{R}^{n}$ and $S \subseteq N$. The excess of coalition S at x, denoted by $e(S, x)$, is defined by

$$
\begin{equation*}
e(S, x)=v(S)-\sum_{i \in S} x_{i} \tag{1}
\end{equation*}
$$

where by convention $e(\emptyset, x)=0$ for all x.

- Using this notation, the core is equivalent to the following.

$$
\begin{equation*}
\mathcal{C}(N, v)=\{x \in X(N, v) \mid e(S, x) \leq 0 \forall S \subseteq N\} \tag{2}
\end{equation*}
$$

- Let $x \in \mathcal{R}^{n}$. Define $\theta(x)$ to be the vector of excesses associated with x in nonincreasing order. Because $e(\emptyset, x)=0$ and $e(N, x)=0$ for any imputation x, these two coalitions are excluded in this vector θ. That is,

$$
\theta(x)=\left(\theta_{1}(x), \theta_{2}(x), \cdots, \theta_{2^{n}-2}(x)\right) \in \mathcal{R}^{2^{n}-2}
$$

where

$$
\theta_{1}(x) \geq \theta_{2}(x) \geq \cdots \theta_{2^{n}-2}(x)
$$

and each $\theta_{i}(x)$ is associated with the excess of some coalition.

- Define the lexicographic ordering $\leq_{l e x}$ on these vectors in the following way. For two vectors a and $b, a \leq_{l e x} b$ if either $a=b$ or there exists a number k such that

$$
\begin{aligned}
& -a_{l}=b_{l} \forall l \in\{1,2, \cdots, k-1\} \text { and } \\
& -a_{k}<b_{k}
\end{aligned}
$$

- The ordering $\leq_{l e x}$ is a partial ordering, and for every $a, b \in \mathcal{R}^{n}$, either $a \leq_{l e x} b$ or $b \leq_{l e x} a$.

Definition. The nucleolus of a game (N, v), denoted by $\mathcal{N}(N, v)$ is the set of imputations x for which $\theta(x)$ is lexicographically minimum among all imputations. Formally,

$$
\begin{equation*}
\mathcal{N}(N, v)=\left\{x \in X(N, v) \mid \theta(x) \leq_{l e x} \theta(y) \forall y \in X(N, v)\right\} \tag{3}
\end{equation*}
$$

- One property of the nucleolus is that it is always a subset of the core if the core is nonempty.

Proposition. Let (N, v) be a TU game such that the $\mathcal{C}(N, v) \neq \emptyset$. Then,

$$
\mathcal{N}(N, v) \subseteq \mathcal{C}(N, v)
$$

- Sketch of proof: Suppose that there exists an imputation $x \in \mathcal{N}(N, v)$ such that $x \notin \mathcal{C}(N, v)$, which implies that for some coalition $S, e(S, x)>0$. Now, compare $\theta(x)$ to $\theta(y)$ where $y \in \mathcal{C}(N, v)$ to reach a contradiction.
III. Nonemptiness of the Nucleolus
- It can be shown that for any game $(N, v), \mathcal{N}(N, v) \neq \emptyset$, using Weierstrauss' Theorem.
- Note: For any coalition $S \subseteq N, e(S, \cdot)=v(S)-\sum_{i \in S} x_{i}$ is a continuous function of $x=\left(x_{i}\right)_{i \in N}$.
- To show that $\theta_{k}(\cdot)$ is a continuous function of x for each $1 \leq k \leq 2^{n}-2$, the following result is useful.

Proposition. For each $1 \leq k \leq 2^{n}-2$,

$$
\begin{equation*}
\theta_{k}(x)=\max _{\mathbf{T} \subseteq 2^{N} \backslash\{\emptyset, N\},|\mathbf{T}|=k} \min _{S \in \mathbf{T}} e(S, x) \tag{4}
\end{equation*}
$$

- The interpretation of the right hand side of (4):
- The "min" operations picks the smallest (or k-th highest) excess of the k coalitions in \mathbf{T} with respect to x.
- In order to pick the k-th highest among all options - the "max" operation
- Because $\theta_{k}(\cdot)$ is defined by a finite number of max and min of continuous functions, θ_{k} is a continuous function.
- To establish existence, consider the following series of optimization problems.

Problem 1. Find $x \in X(N, v)$ that solves the following:

$$
\begin{equation*}
\min _{x \in X(N, v)} \theta_{1}(x) \tag{5}
\end{equation*}
$$

Let X_{1} denote the set of imputations that solves Problem 1 (or (5)).

Problem k. Find $x \in X_{k-1}$ that solves the following:

$$
\begin{equation*}
\min _{x \in X_{k-1}} \theta_{k}(x) \tag{6}
\end{equation*}
$$

Let X_{k} denote the set of imputations that solves Problem k (or (6)).

- By Weierstrauss's theorem, $X_{1} \neq \emptyset$ and compact since $X(N, v) \neq \emptyset$ is compact and θ is continuous.
- Continuing in this manner, $X_{k} \neq \emptyset$ is compact for all $k=1,2, \cdots, 2^{n}-2$. In particular, $\emptyset \neq X_{2^{n}-2}=\mathcal{N}(N, v)$.
IV. The Nucleolus is a Singleton
- In Section III, it was established that $\mathcal{N}(N, v) \neq \emptyset$.
- In this section, it is shown that for every game $(N, v), \mathcal{N}(N, v)$ consists of only one imputation.

Theorem. Let (N, v) be any TU game. If $x, y \in \mathcal{N}(N, v)$, then $x=y$.

Below is a sketch of the proof of this statement. Suppose throughout that $x, y \in \mathcal{N}$ and $x \neq y$. Let $z=(x+y) / 2$. The objective is to show that $\theta(z)<l_{\text {lex }} \theta(x)$.

1. $x, y \in \mathcal{N} \Rightarrow \theta(x)=\theta(y)$. That is, $\theta_{l}(x)=\theta_{l}(y)$ for all $l=1,2, \cdots, 2^{n}-2$.
2. Let $S_{1}, S_{2}, \cdots, S_{2^{n}-2}$ be the coalitions that give the excess values in $\theta(x)$. That is, for each l

$$
e\left(S_{l}, x\right)=\theta_{l}(x)
$$

3. Similarly define $T_{1}, T_{2}, \cdots, T_{2^{n}-2}$ for the excess values in $\theta(y)$. That is, for each l,

$$
e\left(T_{l}, y\right)=\theta_{l}(y)
$$

4. From how the coalitions S_{l} and T_{l} were defined, there may be many ways to order the S_{l} 's and T_{l} 's if, for example, consecutive entries in $\theta(x)$ (and in $\theta(y)$ since $\theta(x)=\theta(y))$ are equal. Therefore, reorder the S_{l} 's and T_{l} 's such that the number k that satisfies the condition below is maximized.

- $S_{l}=T_{l}$ for all $l \leq k-1$
- $S_{k} \neq T_{k}$

Such a k must exist since $x \neq y$, so that there exists $i \in N$ such that $e(\{i\}, x) \neq$ $e(\{i\}, y)$.
5. Note the following property of the excess $e(S, \cdot)$ as a function of the imputation.

Lemma. Let $S \subseteq N$. Then, for any $x, y \in X$ and $0 \leq \lambda \leq 1$,

$$
e(S,((1-\lambda) x+\lambda y))=(1-\lambda) e(S, x)+\lambda e(S, y)
$$

6. From the lemma, $e\left(S_{l}, z\right)=\frac{1}{2} e\left(S_{l}, x\right)+\frac{1}{2} e\left(S_{l}, y\right)=e\left(S_{l}, x\right)=e\left(T_{l}, y\right)$ for $l \leq k-1$,
7. Now, consider the set of coalitions $\mathcal{S}=\left\{S \subset N \mid e(S, x)=e\left(S_{k}, x\right)\right\}$ and $\mathcal{T}=\{T \subset$ $\left.N \mid e(T, y)=e\left(T_{k}, y\right)\right\}$. Note the following facts.

- $\mathcal{S} \neq \emptyset$ and $\mathcal{T} \neq \emptyset$
- $\mathcal{S} \cap \mathcal{T}=\emptyset$ - otherwise, if $S \in \mathcal{S} \cap \mathcal{T}$, then coalitions can be re-ordered, contradicting how k was defined.
- Recalling that $e\left(S_{k}, x\right)=\theta_{k}(x)=\theta_{k}(y)=e\left(T_{k}, y\right)$, for each $S \in \mathcal{S}, e(S, x)>$ $e(S, y)$ and for $T \in \mathcal{T}, e(T, y)>e(T, x)$.
- By definition of the sets \mathcal{S} and $\mathcal{T}, e(S, x)=e(T, y)$ for all $S \in \mathcal{S}, T \in \mathcal{T}$.

8. Also, $e(S, z)<e(S, x)$ for all $S \in \mathcal{S}$ and $e(T, z)<e(T, y)$ for all $T \in \mathcal{T}$. Note also that $e(S, z)<e(S, x) \leq e\left(S_{k-1}, x\right)=e\left(S_{k-1}, z\right)$.
9. Let R^{*} be a coalition such that $e\left(R^{*}, z\right)=\max _{R \neq S_{1}, \cdots, S_{k-1}} e(R, z)$. Then, $\theta_{k}(z)=$ $e\left(R^{*}, z\right)$ and $e\left(R^{*}, z\right)<e(S, x)=\theta_{k}(x)$ or $e\left(R^{*}, z\right)<e(T, y)=\theta_{k}(y)$.
10. Thus, $\theta(z)<l_{\text {lex }} \theta(x)=\theta(y)$, contradicting $x, y \in \mathcal{N}$.
V. Calculation of the Nucleolus - Overall Procedure and Examples

- One way to calculate the nucleolus can be calculated through solving a series of linear programs.

Problem 1'. Find M and $x \in X$ that solves

$$
\begin{equation*}
\min M \tag{7}
\end{equation*}
$$

subject to

$$
e(S, x) \leq M \forall S \subseteq N, S \neq \emptyset, N
$$

Let M^{\prime} denote the optimal value of (7). Let X_{1}^{\prime} denote the set of imputations that satisfies the constraints under M^{\prime}. If $X_{1}^{\prime}=\{x\}$ (a singleton), then x is the nucleolus. Let $\mathcal{S}_{1}=\left\{S \in 2^{N} \backslash\{N, \emptyset\} \mid e(S, x)=M^{\prime}\right\}$ and let $\mathcal{S}_{1}^{\prime}=\mathcal{S}_{0} \backslash \mathcal{S}_{1}$ where $\mathcal{S}_{0}=2^{N} \backslash\{\emptyset, N\}$.

Problem k. Find $x \in X_{k-1}^{\prime}$ and M_{k} that solves the following:

$$
\begin{equation*}
\min M_{k} \tag{8}
\end{equation*}
$$

subject to

$$
e(S, x) \leq M_{k} \forall S \in \mathcal{S}_{k-1}^{\prime}
$$

Let X_{k}^{\prime} denote the set of imputations that solves Problem k (or (8)) and M_{k}^{\prime} be the solution to (8).
Continue until X_{k}^{\prime} is a singleton.

Example 1:

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1,2,3\})=10 \\
v(\{1,2\})=4, v(\{1,3\})=3, v(\{2,3\})=8 \\
v(\{1\})=v(\{2\})=v(\{3\})=0
\end{gathered}
$$

Set up the first problem as follows:

$$
\min M
$$

subject to

$$
\begin{aligned}
4-\left(x_{1}+x_{2}\right) & \leq M \\
3-\left(x_{1}+x_{3}\right) & \leq M \\
8-\left(x_{2}+x_{3}\right) & \leq M \\
-x_{1} & \leq M \\
-x_{2} & \leq M \\
-x_{3} & \leq M
\end{aligned}
$$

Because $x \in X$, there is also the condition $x_{1}+x_{2}+x_{3}=10$. By using this condition, the first three inequalities can be rewritten as follows:

$$
\begin{aligned}
& -6+x_{3} \leq M \\
& -7+x_{2} \leq M \\
& -2+x_{1} \leq M
\end{aligned}
$$

Rearraging the inequalities leads to the following.

$$
\begin{aligned}
& -M \leq x_{1} \leq M+2 \\
& -M \leq x_{2} \leq M+7 \\
& -M \leq x_{3} \leq M+6
\end{aligned}
$$

Also, by the restriction $x_{1}+x_{2}+x_{3}=10$, the following also needs to be satisfied (from the above inequalities):

$$
-3 M \leq\left(x_{1}+x_{2}+x_{3}\right)=10 \leq 3 M+15
$$

The minimum M such that the inequalities hold without contradiction is $M=-1$, which is the excess of the coalitions $\{2,3\}$ and $\{1\}$. This yields $x_{1}=1$ with x_{2} and x_{3} still undetermined except for $1 \leq x_{2} \leq 6$ and $1 \leq x_{3} \leq 5$, so the process continues.

Now, substitute $x_{1}=1$ whereever they appear, delete the inequalities corresponding to $\{2,3\}$ and $\{1\}$, and let M^{\prime} be the next highest excess value. The second problem is as follows:

$$
\min M^{\prime}
$$

subject to

$$
\begin{aligned}
3-x_{2} & \leq M^{\prime} \\
2-x_{3} & \leq M^{\prime} \\
-x_{2} & \leq M^{\prime} \\
-x_{3} & \leq M^{\prime}
\end{aligned}
$$

Using the fact that $x_{2}+x_{3}=10-x_{1}=9$, the following set of inequalities, with respect to x_{2} can be obtained:

$$
-M^{\prime}+3 \leq x_{2} \leq M^{\prime}+7
$$

The minimum M^{\prime} is $M^{\prime}=-2$, and $x_{2}=5$, implying $x_{3}=9-x_{2}=4$. Because, the only x that satisfies the inequalities with $M^{\prime}=-2$ is $(1,5,4)$, the resulting vector $(1,5,4)$ is the nucleolus.

Example 2:

Consider a TU game with $N=\{1,2,3\}$ and v given by

$$
v(S)=\left\{\begin{array}{lc}
1 & \text { if }|S| \geq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

The minimization problem to consider is given by

$$
\min M
$$

subject to

$$
\begin{aligned}
1-\left(x_{1}+x_{2}\right) & \leq M \\
1-\left(x_{1}+x_{3}\right) & \leq M \\
1-\left(x_{2}+x_{3}\right) & \leq M \\
-x_{1} & \leq M \\
-x_{2} & \leq M \\
-x_{3} & \leq M
\end{aligned}
$$

Using the same technique as Example 1, we obtain the following

$$
\begin{aligned}
& -M \leq x_{1} \leq M \\
& -M \leq x_{2} \leq M \\
& -M \leq x_{3} \leq M
\end{aligned}
$$

Also, by the restriction $x_{1}+x_{2}+x_{3}=1$, the following also needs to be satisfied (from the above inequalities):

$$
\begin{equation*}
-3 M \leq 1 \leq 3 M \tag{9}
\end{equation*}
$$

The condition $M \geq 1 / 3$ is the strongest condition. Thus, $M=1 / 3$. Note that one of the inequalities in (9) is used. Plugging M back into the inequalities yields

$$
\begin{aligned}
& -1 / 3 \leq x_{1} \leq 1 / 3 \\
& -1 / 3 \leq x_{2} \leq 1 / 3 \\
& -1 / 3 \leq x_{3} \leq 1 / 3
\end{aligned}
$$

The only $\left(x_{1}, x_{2}, x_{3}\right)$ that satisfies the above and is also an imputation is $(1 / 3,1 / 3,1 / 3)$,
which must be the nucleolus.

Example 3 (Calculation using Excess Vectors and Definition of the Nucleolus):
Consider a voting game with players $N=\{1,2,3\}$ such player 1 and player 2 are veto players. Formally, the TU game is given by N and the function v defined by

$$
\begin{gathered}
v(N)=v(\{1,2\})=1 \\
v(S)=0, S \neq N,\{1,2\} .
\end{gathered}
$$

From the previous lecture notes, the core is given by the following set:

$$
\mathcal{C}(N, v)=\left\{(\alpha, 1-\alpha, 0) \in \mathcal{R}^{3} \mid 0 \leq \alpha \leq 1\right\} .
$$

Thus, the nucleolus must be of the form $(\alpha, 1-\alpha, 0)$ for $0 \leq \alpha \leq 1$. Consider the case in which $\alpha \geq 1-\alpha$ and let $y=(\alpha, 1-\alpha, 0)$. Then, the excess vector of y is

$$
\theta(y)=(0,0,-(1-\alpha),-(1-\alpha),-\alpha,-\alpha) .
$$

and for the case in which $1-\alpha \geq \alpha$,

$$
\theta(y)=(0,0,-\alpha,-\alpha,-(1-\alpha),-(1-\alpha)) .
$$

This vector is at its lexicographic minimum if $\alpha=1 / 2$. Thus, the nucleolus is $(1 / 2,1 / 2,0)$.

VI. Related Concepts - Least Core and Prenucleolus

- It is known that if $\mathcal{C} \neq \emptyset$, then $\nu \in \mathcal{C}$. However, the core can be empty in some games.
- Let X^{*} be the set of vectors of \mathcal{R}^{n} that satisfies group rationality. That is,

$$
X^{*}(N, v)=\left\{x \in \mathcal{R}^{n} \mid \sum_{i \in N} x_{i}=v(N)\right\}
$$

An element $x \in X^{*}$ is called a preimputation, and X^{*} is called the set of preimpuatations.

- For $\varepsilon \in \mathcal{R}$, define the ϵ-core, $\mathcal{C}_{\varepsilon}$:

$$
\mathcal{C}_{\epsilon}(N, v)=\left\{x \in X^{*}(N, v) \mid e(S, x) \leq \varepsilon, \forall S \subseteq N\right\}
$$

- When $\varepsilon=0, \mathcal{C}_{\varepsilon}=\mathcal{C}$. Moreover, for $\varepsilon<\varepsilon^{\prime}$, then $\mathcal{C}_{\varepsilon} \subseteq \mathcal{C}_{\varepsilon^{\prime}}$.
- There exists ε large enough such that $\mathcal{C}_{\varepsilon} \neq \emptyset$.
- Define the least core, $\mathcal{L C}$ of (N, v) by

$$
\begin{equation*}
\mathcal{L C}=\bigcap_{\varepsilon, \mathcal{C}_{\varepsilon} \neq \emptyset} \mathcal{C}_{\varepsilon} \tag{10}
\end{equation*}
$$

By definition, $\mathcal{L C} \neq \emptyset$.

- The definition of the least core (10) can be rewritten as the following:

$$
\begin{equation*}
\mathcal{L C}=\mathcal{C}_{\varepsilon_{0}} \tag{11}
\end{equation*}
$$

where

$$
\varepsilon_{0}=\min _{x \in X} \max _{S \subset N, S \neq \emptyset} e(S, x)
$$

- The prenucleolus of (N, v) is the set of $x \in X^{*}(N, v)$ such that there is no $y \in$ $X^{*}(N, v)$ such that $\theta(y)<l_{\text {lex }} \theta(x)$.

