Basic Theory of Transferable Utility (TU) Games: Core

I. Overview

e Second model: Cooperative game with side payments (including games with three

or more players) — transferable utility (TU) coalitional games

e Abstract mathematical model representing a situation in which a subset of players,

called a coalition, can form and gain surplus by doing so.
e Questions in cooperative game theory:

(Q1) What coalitions would be formed?

(Q2) How should the surplus be allocated among the players?

II. Definitions

e Given a set N, let 2V denote the set of subsets of N. That is, 2 = {S|S C N}.

Definition. A transferable utility (TU) game in characteristic function

form (or TU game or game) is given by (N, v) where

e N={1,2,--- ,n} is a finite set of players

e v: 2V — R, called the characteristic function, is such that v(S) repre-
sents the total amount that S can guarantee (also called the worth of S). By

convention, v(@)) = 0.

A subset S C N is called a coalition. (N,v) in some texts is called a coalitional

game with v as the coalitional function.

e A TU game (N,v) is superadditive if for every coalition S and 7T such that
SNT =0,
v(SUT) >v(S)+v(T)

e A TU game is said to be inessential if for every S C N,

v(8) = v({i}) (1)

€S

(N,v) is said to be essential if it is not inessential. That is, for some S C N the

inequality in (1) is not satisfied.



A superadditive game (IV,v) is essential if and only if v(N) > > .-y v({i}).

e Most examples of TU games are superadditive. Loosely speaking, for superadditive
games, it is assumed that the coalition N (also called the grand coalition) is formed

— answers question (Q1).
e Only need to focus on (Q2) — how to allocate v(N).

e An n-vector z = (x1,x2, - ,2,) € R™ is an imputation if it satisfies the following:

— > ien Ti = v(IV) (group rationality)
— x; > v({i}) Vi € N (individual rationality)
Denote the set of imputations of (N, v) by X(N,v) or by X if there is no confusion

as to the game being analyzed.

e The two conditions for the imputation — minimal conditions under which an allo-
cation method of v(V) should satisfy.

e Extend ”individual rationality” for coalitions — coalitional rationality. This then

leads to the following concept.

Definition. Let (N, v) be a game. The following set below, denoted by C(N,v), is
called the core of (N,v).

C(N,v) ={z € X(N,0)] > 2 >v(S) VS C N}. (2)
€S
The condition in the right-hand side of (2) is called coalitional rationality.

e An imputation zx is said to be dominated by imputation y if there exists a
coalition S C N such that the following hold.

— Yies¥i < v(9)

-y >z Vi eS
If the above holds, it is also said that coalition S blocks imputation x via
imputation y.

e The dominance core (DC(N,v)) is defined as the set of imputations that are
not dominated. It can be shown that C(N,v) C DC(N,v) for all games (N, v).
Moreover, if (N, v) is superadditive, then C(N,v) = DC(N,v).




ITI. Other Definitions

e Let (V,v) and (N,v) be two games. (N,v’) is strategically equivalent to (N, v)
if there exist a > 0 and 8 = (51,82, -+ , Bn) € R™ such that

V(S)=av(S)+ > B VSCN

i€S

e Define the relation (N, v) ~ (N, ) if (N, ) is strategically equivalent to (N, v). It

can be shown that ~ is an equivalence relation.

e A game (N,v') is a zero-normalization if (N,v) if (N,v’) is strategically equiv-
alent to (N,v) and v'({i}) = 0 Vi € N. For every game (N,v) there exists a

zero-normalization.

e A game (N,v) is monotonic if for all S,7 € 2V with S C T,

v(8) < o(T)

e For any game (N, v), there is a monotonic game that is strategically equivalent to
(N, v).

e A game (N,v) is zero-monotonic if for every S,T € 2V with S C T,

o(T) 2 0(S) + Y o({i})

i€T\S
It is easily seen that every superadditive game is zero-monotonic.
e Equivalently, a game is zero-monotonic if its zero-normalization is monotonic.

e Let (N,v') be a game that is strategically equivalent to (N,v) with o > 0 and
vector B € R™. If & € C(N,v), then ' € C(N,v') where 2/ € R" is defined by

x, = ax; + B;. The converse also holds true. (covariance property of the core)

IV. Mathematical Aside: Equivalence Relation

k)

e Example: In expressions such as "z < y” or "z = y,” 7<” and "=" are called

binary relations.!

!Technically, given a set X, a binary relation is associated with a subset of K C X x X where z <y
< (z,y) € K.



e A binary relation ~ is called an equivalence relation on X if the following hold
for all x,y,z € X.

1. x ~ z (Reflexivity)
2. z ~y <y~ (Symmetry)

3. x~yand y ~z = x ~ 2z (Transitivity)
V. Examples

1. Let N = {1,2,3} be the set of players. Suppose that each player owns a unit of
input, and for every two units of input, a unit of output is produced. The profit
from selling this unit of output is 1. The game (N, v) associated with this situation
is given by the following.

1 if 8] > 2

0 otherwise

The core of this game is empty. That is, C(N,v) = 0.

2. Consider the same setup as 1. but in order to produce a unit of output, player 1’s

input is necessary. The game (N, v) associated with this situation is given by

1 ifleSand|S|>2
v(S) =
0 otherwise

The core C(N,v) = {(1,0,0)}.
3. Voting Games
e A game (N,v) is simple if v(N) =1 and v(S5) € {0,1} for all S C N.

e A game (N,v) is a voting game if it is simple and monotonic.

e A voting game (NN, v) is proper if for all S C N such that v(S) =1, v(N\95) =
0.

e Given a proper voting game (IV,v), the set of veto players is given by V =

{S € Nlv(5) =1}

Then, C(N,v) # ) if and only if V # (). Moreover, when V # (),

C(N,v) ={z € X(N,v)|lx; =0Vie N\ V}.



4. Cost Sharing Games

e Let N be the set of towns, each of which needs to draw water from a lake.

e Suppose that for each S C N, the cost of building pipelines to provide water

to towns in S costs an amount ¢(S) > 0.

e Costs ¢ can be viewed as a function from 2V to R. Suppose that ¢ is subad-
ditive, that is, for all S,T € 2V with SNT =0,

c(S)+¢(T)>c(SUT).
e One way to define a TU game (NN, v;) based on this situation is by
’Ul(S) = —C(S),

but for each nonempty S, v1(S5) < 0.

e To fix this, the following TU game (N, vy) is strategically equivalent to (IV,v;)
and is such that v9(S) > 0, where vy is defined by

va(S) = —e(8) + Y e({i}).

€S
VI. Convex Games — Sufficient Condition for Nonemptiness of the Core

e From the first example, the core of a superadditive game may be empty — for a

sufficient condition, need a stronger concept.

Definition. (V,v) is a convex game if for every S, T € 2%,

v(S) +v(T) <v(SUT) +v(SNT) (3)

e From (3), it can be seen easily that a convex game is superadditive.

e An equivalent (and sometimes useful) formulation of a convex game is given in the

following.



Proposition. A game (N,v) is convex < for every S, T € 2V with S C T,

v(SU{i}) —o(S) <v(TU{i}) —o(T) (4)

e Sketch of Proof:

(=) : Let S,T € 2V be such that S C T. Let S’ = SU{i} and 7" = T and use (3).

(<) : Let S, T € 2V be any pair of coalitions. For notational ease, let R := SN T
and T'\ S = {j1,jo2, - ,ji} where l = |T\ S|. Note that

RQS,RU{jl,jQ,"’ 7jl}:T7SU{j17j27'” 7]1}:SUT

Then, the following inequalities can be obtained by applying (4): (will be

shown on the board)

e The relationship between (3) and (4) is similar to that between supermodularity

and increasing differences (introduced in Advanced Noncooperative Game Theory).

e Let 7 : N — N be a one-to-one mapping, which is called a permutation. Let

i € N. Then, (i) is a number that denotes player i’s position in the ordering.

e Example: If N = {1,2,3} and 7(1) = 2, 7(2) = 3 and 7(3) = 1, then player 1 is
second, player 2 is third, and player 3 is first:

(3,1,2).

e For a player i € N, define the set of players that precede i, S™ by

§™ = {j € Nln(j) < (i)} (5)
Define the vector a™ = (af,a3,--- ,al}) by
aj =v(S™ U{i}) —v(S™) (6)

The value af represents i’s marginal contribution in the permutation .



Theorem Let (N, v) be a convex game. For any permutation m, a™ € C(N,v).

Sketch of Proof:

e It can be easily checked that a™ is an imputation, with individual rationality fol-

lowing from superadditivity (which is implied by convexity).

e [t remains to show coalitional rationality. Let S C N be any coalition. It is sufficient
to show that

Let N\ S = {i1,d2,--,4;} where 7(i1) < m(i2) < -+ < w(4;). Then, (the rest will
be filled in the lecture).

VII. The Bondareva-Shapley Theorem — Necessary and Sufficient Conditions for Nonempti-

ness of the Core

e First consider the following linear programming (LP) problem.

(P) Find z € R™ that solves the following.
min Z T;
subject to

> x> w(S), VSCN,S#0

€S

e Let 2* be a solution to (P). C(N,v) # 0 & > ..y, < v(IN). (Actually, by the
above constraint for S = N, Y,y 27 = v(N).) — need a condition such that the

statement in red holds. Use a result from linear programming.
VIII. Mathematical Aside: Linear Programming
e A linear programming (LP) problem is an optimization problem such that

— the objective function (function that is to be maximized or minimzed) is linear

in the decision variables



— the constraints are linear (in)equalities in the decision variables

Primal Problem (P): Choose x € R™ that solves the following problem.
n
min Z C; g (7)
i=1
subject to

n
D aijwi by, §=1,2,-,m (8)
=1

x; >0, 1=1,2,---,n. 9)

e To analyze the original problem, called the primal, it is sometimes useful to solve

the dual problem, which is defined in the following.

Dual Problem (D): Choose y € R™ that solves the following maximization prob-
lem. -
max Z by, (10)
j=1
subject to
m
D ayy;<e, i=1,2--,n (11)
j=1

e The primal problem is said to be feasible if there exists = that satisfy (8)-(9).
Likewise, the dual problem is feasible if there exists y and (11)-(12). Such x and

y are called feasible vectors or feasible solutions.
e The problem (P) is said to be infeasible if there is no feasible solution.

e The problem (P) is said to be unbounded if for every real number K, there is a

feasible z, such that

n
Z cxri < K
=1

8



e Given a linear program, there are only three possibilities.

— The problem has an optimal solution.
— The problem is infeasible.

— The problem is unbounded.

(One possibility is ruled out: no solution but not unbounded. This is a fact that

does not hold for general (nonlinear) optimization problems.)

Weak Duality Theorem. Let x € R™ and y € R™ be arbitrary vectors that are
feasible to (P) and (D) respectively. Then, the following inequality holds.

m n
D byp <Y e (13)
j=1 i=1

Specifically, if 2* solves (P) and y* solves (D), then

m n
Y obyp <Y e} (14)
j=1 i=1

e Immediate consequences:

— (P) unbounded = (D) infeasible.
— (D) unbounded = (P) infeasible.

e A stronger result can be obtained.

(Strong) Duality Theorem. If there is a solution z* to the problem (P), then
there is a solution y* to the dual problem (D) and the following equality holds.

n m
> =Y by (15)
i=1 j=1

e Finally, consider a problem without a nonnegativity constraint (9):
n
min Z CiTi (16)
i=1

9




subject to

n
Zaz]xzzbja ]:1a27 , M

=1

(17)

e The problem above can be formulated in the form of (7)-(9) by defining two non-

. . "
negative variables z} and z; such that

e The dual of (16) is the following

Vi 1"

m
max Z bjy; (18)
j=1
subject to
m
Zaijyjzci7i:1727'”7n (19)
j=1
y; >0, j=1,2,--- ,m. (20)
IX. Back to the Theorem
e Recall now the original problem.
(P) Find z € R™ that solves the following.
min Z x; (21)
iEN
subject to
D ai > 0(S) VS C N, S # 0. (22)
€S

e Consider the dual of (P), which is given in the following.
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(D) Find (ds)p2scn that solves the following.

SCN,S#0D
subject to
Y ds=1,VieN, (24)
SCN,ieS
85 >0, VS C N,S #0. (25)

¢ Duality theorem (see Appendix) implies that if the solution §* = (6%)gcn, g9 to
the problem (D), then >,y 27 = > gcn g9 050(S). Thus, for the core to be
nonempty, it is necessary and sufficient for ) d5v(S) < v(N).

e A collection of coalitions, B C 2V \ {0}, is said to be a balanced family if there

exist weights (dg)sep such that

Y ds=1,VieN
SeBES

e A game (INV,v) is said to be balanced if for every balanced family of coalitions B

with nonnegative weights (dg)sen,

> bsv(S) < v(N).

SeB

Bondareva-Shapley Theorem (weak version).

C(N,v) #0 < (N,v) is balanced.

e (N,v) being balanced required checking the inequality for all balanced families B.
It can be shown that the theorem holds even when considering minimal balanced

collections.

e A balanced family B is a minimal balanced family if there is no balanced family
B’ with B’ C B.
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Bondareva-Shapley Theorem (strong version).

C(N,v) # () & For every minimal balanced family B,

) " ds0(S) < v(N).
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