## I. Overview

- Second model: Cooperative game with side payments (including games with three or more players) $\rightarrow$ transferable utility (TU) coalitional games
- Abstract mathematical model representing a situation in which a subset of players, called a coalition, can form and gain surplus by doing so.
- Questions in cooperative game theory:
(Q1) What coalitions would be formed?
(Q2) How should the surplus be allocated among the players?


## II. Definitions

- Given a set $N$, let $2^{N}$ denote the set of subsets of $N$. That is, $2^{N}=\{S \mid S \subseteq N\}$.

Definition. A transferable utility (TU) game in characteristic function form (or TU game or game) is given by $(N, v)$ where

- $N=\{1,2, \cdots, n\}$ is a finite set of players
- $v: 2^{N} \rightarrow \mathcal{R}$, called the characteristic function, is such that $v(S)$ represents the total amount that $S$ can guarantee (also called the worth of $S$ ). By convention, $v(\emptyset)=0$.

A subset $S \subseteq N$ is called a coalition. $(N, v)$ in some texts is called a coalitional game with $v$ as the coalitional function.

- A TU game $(N, v)$ is superadditive if for every coalition $S$ and $T$ such that $S \cap T=\emptyset$,

$$
v(S \cup T) \geq v(S)+v(T)
$$

- A TU game is said to be inessential if for every $S \subseteq N$,

$$
\begin{equation*}
v(S)=\sum_{i \in S} v(\{i\}) \tag{1}
\end{equation*}
$$

$(N, v)$ is said to be essential if it is not inessential. That is, for some $S \subseteq N$ the inequality in (1) is not satisfied.

- A superadditive game $(N, v)$ is essential if and only if $v(N)>\sum_{i \in N} v(\{i\})$.
- Most examples of TU games are superadditive. Loosely speaking, for superadditive games, it is assumed that the coalition $N$ (also called the grand coalition) is formed - answers question (Q1).
- Only need to focus on (Q2) - how to allocate $v(N)$.
- An $n$-vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathcal{R}^{n}$ is an imputation if it satisfies the following:
$-\sum_{i \in N} x_{i}=v(N)$ (group rationality)
$-x_{i} \geq v(\{i\}) \forall i \in N$ (individual rationality)
Denote the set of imputations of $(N, v)$ by $X(N, v)$ or by $X$ if there is no confusion as to the game being analyzed.
- The two conditions for the imputation - minimal conditions under which an allocation method of $v(N)$ should satisfy.
- Extend "individual rationality" for coalitions $\rightarrow$ coalitional rationality. This then leads to the following concept.

Definition. Let $(N, v)$ be a game. The following set below, denoted by $\mathcal{C}(N, v)$, is called the core of $(N, v)$.

$$
\begin{equation*}
\mathcal{C}(N, v)=\left\{x \in X(N, v) \mid \sum_{i \in S} x_{i} \geq v(S) \forall S \subseteq N\right\} \tag{2}
\end{equation*}
$$

The condition in the right-hand side of (2) is called coalitional rationality.

- An imputation $x$ is said to be dominated by imputation $y$ if there exists a coalition $S \subset N$ such that the following hold.

$$
\begin{aligned}
& -\sum_{i \in S} y_{i} \leq v(S) \\
& -y_{i}>x_{i} \forall i \in S
\end{aligned}
$$

If the above holds, it is also said that coalition $S$ blocks imputation $x$ via imputation $y$.

- The dominance core $(\mathcal{D C}(N, v))$ is defined as the set of imputations that are not dominated. It can be shown that $\mathcal{C}(N, v) \subseteq \mathcal{D C}(N, v)$ for all games $(N, v)$. Moreover, if $(N, v)$ is superadditive, then $\mathcal{C}(N, v)=\mathcal{D C}(N, v)$.


## III. Other Definitions

- Let $(N, v)$ and $\left(N, v^{\prime}\right)$ be two games. $\left(N, v^{\prime}\right)$ is strategically equivalent to $(N, v)$ if there exist $\alpha>0$ and $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) \in \mathcal{R}^{n}$ such that

$$
v^{\prime}(S)=\alpha v(S)+\sum_{i \in S} \beta_{i} \forall S \subseteq N
$$

- Define the relation $(N, v) \sim\left(N, v^{\prime}\right)$ if $\left(N, v^{\prime}\right)$ is strategically equivalent to $(N, v)$. It can be shown that $\sim$ is an equivalence relation.
- A game $\left(N, v^{\prime}\right)$ is a zero-normalization if $(N, v)$ if $\left(N, v^{\prime}\right)$ is strategically equivalent to $(N, v)$ and $v^{\prime}(\{i\})=0 \forall i \in N$. For every game $(N, v)$ there exists a zero-normalization.
- A game $(N, v)$ is monotonic if for all $S, T \in 2^{N}$ with $S \subseteq T$,

$$
v(S) \leq v(T)
$$

- For any game $(N, v)$, there is a monotonic game that is strategically equivalent to $(N, v)$.
- A game $(N, v)$ is zero-monotonic if for every $S, T \in 2^{N}$ with $S \subseteq T$,

$$
v(T) \geq v(S)+\sum_{i \in T \backslash S} v(\{i\})
$$

It is easily seen that every superadditive game is zero-monotonic.

- Equivalently, a game is zero-monotonic if its zero-normalization is monotonic.
- Let $\left(N, v^{\prime}\right)$ be a game that is strategically equivalent to $(N, v)$ with $\alpha>0$ and vector $\beta \in \mathcal{R}^{n}$. If $x \in \mathcal{C}(N, v)$, then $x^{\prime} \in \mathcal{C}\left(N, v^{\prime}\right)$ where $x^{\prime} \in \mathcal{R}^{n}$ is defined by $x_{i}^{\prime}=\alpha x_{i}+\beta_{i}$. The converse also holds true. (covariance property of the core)


## IV. Mathematical Aside: Equivalence Relation

- Example: In expressions such as $" x \leq y "$ or $" x=y$," " $\leq "$ and " $="$ are called binary relations. ${ }^{1}$

[^0]- A binary relation $\sim$ is called an equivalence relation on $X$ if the following hold for all $x, y, z \in X$.

1. $x \sim x$ (Reflexivity)
2. $x \sim y \Leftrightarrow y \sim x$ (Symmetry)
3. $x \sim y$ and $y \sim z \Rightarrow x \sim z$. (Transitivity)

## V. Examples

1. Let $N=\{1,2,3\}$ be the set of players. Suppose that each player owns a unit of input, and for every two units of input, a unit of output is produced. The profit from selling this unit of output is 1 . The game $(N, v)$ associated with this situation is given by the following.

$$
v(S)=\left\{\begin{array}{lc}
1 & \text { if }|S| \geq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

The core of this game is empty. That is, $\mathcal{C}(N, v)=\emptyset$.
2. Consider the same setup as 1 . but in order to produce a unit of output, player 1's input is necessary. The game $(N, v)$ associated with this situation is given by

$$
v(S)= \begin{cases}1 & \text { if } 1 \in S \text { and }|S| \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

The core $\mathcal{C}(N, v)=\{(1,0,0)\}$.
3. Voting Games

- A game $(N, v)$ is simple if $v(N)=1$ and $v(S) \in\{0,1\}$ for all $S \subseteq N$.
- A game $(N, v)$ is a voting game if it is simple and monotonic.
- A voting game $(N, v)$ is proper if for all $S \subseteq N$ such that $v(S)=1, v(N \backslash S)=$ 0.
- Given a proper voting game $(N, v)$, the set of veto players is given by $V=$ $\bigcap\{S \subseteq N \mid v(S)=1\}$.

Then, $\mathcal{C}(N, v) \neq \emptyset$ if and only if $V \neq \emptyset$. Moreover, when $V \neq \emptyset$,

$$
\mathcal{C}(N, v)=\left\{x \in X(N, v) \mid x_{i}=0 \forall i \in N \backslash V\right\}
$$

4. Cost Sharing Games

- Let $N$ be the set of towns, each of which needs to draw water from a lake.
- Suppose that for each $S \subseteq N$, the cost of building pipelines to provide water to towns in $S$ costs an amount $c(S)>0$.
- Costs $c$ can be viewed as a function from $2^{N}$ to $\mathcal{R}$. Suppose that $c$ is subadditive, that is, for all $S, T \in 2^{N}$ with $S \cap T=\emptyset$,

$$
c(S)+c(T) \geq c(S \cup T) .
$$

- One way to define a TU game $\left(N, v_{1}\right)$ based on this situation is by

$$
v_{1}(S)=-c(S),
$$

but for each nonempty $S, v_{1}(S)<0$.

- To fix this, the following TU game $\left(N, v_{2}\right)$ is strategically equivalent to $\left(N, v_{1}\right)$ and is such that $v_{2}(S) \geq 0$, where $v_{2}$ is defined by

$$
v_{2}(S)=-c(S)+\sum_{i \in S} c(\{i\}) .
$$

VI. Convex Games - Sufficient Condition for Nonemptiness of the Core

- From the first example, the core of a superadditive game may be empty $\rightarrow$ for a sufficient condition, need a stronger concept.

Definition. $(N, v)$ is a convex game if for every $S, T \in 2^{N}$,

$$
\begin{equation*}
v(S)+v(T) \leq v(S \cup T)+v(S \cap T) \tag{3}
\end{equation*}
$$

- From (3), it can be seen easily that a convex game is superadditive.
- An equivalent (and sometimes useful) formulation of a convex game is given in the following.

Proposition. A game $(N, v)$ is convex $\Leftrightarrow$ for every $S, T \in 2^{N}$ with $S \subseteq T$,

$$
\begin{equation*}
v(S \cup\{i\})-v(S) \leq v(T \cup\{i\})-v(T) \tag{4}
\end{equation*}
$$

- Sketch of Proof:
$(\Rightarrow)$ : Let $S, T \in 2^{N}$ be such that $S \subseteq T$. Let $S^{\prime}=S \cup\{i\}$ and $T^{\prime}=T$ and use (3).
$(\Leftarrow):$ Let $S, T \in 2^{N}$ be any pair of coalitions. For notational ease, let $R:=S \cap T$ and $T \backslash S=\left\{j_{1}, j_{2}, \cdots, j_{l}\right\}$ where $l=|T \backslash S|$. Note that

$$
R \subseteq S, R \cup\left\{j_{1}, j_{2}, \cdots, j_{l}\right\}=T, S \cup\left\{j_{1}, j_{2}, \cdots, j_{l}\right\}=S \cup T .
$$

Then, the following inequalities can be obtained by applying (4): (will be shown on the board)

- The relationship between (3) and (4) is similar to that between supermodularity and increasing differences (introduced in Advanced Noncooperative Game Theory).
- Let $\pi: N \rightarrow N$ be a one-to-one mapping, which is called a permutation. Let $i \in N$. Then, $\pi(i)$ is a number that denotes player $i$ 's position in the ordering.
- Example: If $N=\{1,2,3\}$ and $\pi(1)=2, \pi(2)=3$ and $\pi(3)=1$, then player 1 is second, player 2 is third, and player 3 is first:

$$
(3,1,2) .
$$

- For a player $i \in N$, define the set of players that precede $i, S^{\pi, i}$ by

$$
\begin{equation*}
S^{\pi, i}=\{j \in N \mid \pi(j)<\pi(i)\} \tag{5}
\end{equation*}
$$

Define the vector $a^{\pi}=\left(a_{1}^{\pi}, a_{2}^{\pi}, \cdots, a_{n}^{\pi}\right)$ by

$$
\begin{equation*}
a_{i}^{\pi}=v\left(S^{\pi, i} \cup\{i\}\right)-v\left(S^{\pi, i}\right) \tag{6}
\end{equation*}
$$

The value $a_{i}^{\pi}$ represents $i$ 's marginal contribution in the permutation $\pi$.

Theorem Let $(N, v)$ be a convex game. For any permutation $\pi, a^{\pi} \in \mathcal{C}(N, v)$.

Sketch of Proof:

- It can be easily checked that $a^{\pi}$ is an imputation, with individual rationality following from superadditivity (which is implied by convexity).
- It remains to show coalitional rationality. Let $S \subseteq N$ be any coalition. It is sufficient to show that

$$
\sum_{i \in N \backslash S} a_{i}^{\pi} \leq v(N)-v(S)
$$

Let $N \backslash S=\left\{i_{1}, i_{2}, \cdots, i_{l}\right\}$ where $\pi\left(i_{1}\right)<\pi\left(i_{2}\right)<\cdots<\pi\left(i_{l}\right)$. Then, (the rest will be filled in the lecture).
VII. The Bondareva-Shapley Theorem - Necessary and Sufficient Conditions for Nonemptiness of the Core

- First consider the following linear programming (LP) problem.
(P) Find $x \in \mathcal{R}^{n}$ that solves the following.

$$
\min \sum_{i \in N} x_{i}
$$

subject to

$$
\sum_{i \in S} x_{i} \geq v(S), \forall S \subseteq N, S \neq \emptyset
$$

- Let $x^{*}$ be a solution to (P). $\mathcal{C}(N, v) \neq \emptyset \Leftrightarrow \sum_{i \in N} x_{i}^{*} \leq v(N)$. (Actually, by the above constraint for $\left.S=N, \sum_{i \in N} x_{i}^{*}=v(N).\right) \rightarrow$ need a condition such that the statement in red holds. Use a result from linear programming.
VIII. Mathematical Aside: Linear Programming
- A linear programming (LP) problem is an optimization problem such that
- the objective function (function that is to be maximized or minimzed) is linear in the decision variables
- the constraints are linear (in)equalities in the decision variables

Primal Problem (P): Choose $x \in \mathcal{R}^{n}$ that solves the following problem.

$$
\begin{equation*}
\min \sum_{i=1}^{n} c_{i} x_{i} \tag{7}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{i=1}^{n} a_{i j} x_{i} & \geq b_{j}, j=1,2, \cdots, m  \tag{8}\\
x_{i} & \geq 0, i=1,2, \cdots, n \tag{9}
\end{align*}
$$

- To analyze the original problem, called the primal, it is sometimes useful to solve the dual problem, which is defined in the following.

Dual Problem (D): Choose $y \in \mathcal{R}^{m}$ that solves the following maximization problem.

$$
\begin{equation*}
\max \sum_{j=1}^{m} b_{j} y_{j} \tag{10}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{j=1}^{m} a_{i j} y_{j} & \leq c_{i}, i=1,2, \cdots, n  \tag{11}\\
y_{j} & \geq 0, j=1,2, \cdots, m \tag{12}
\end{align*}
$$

- The primal problem is said to be feasible if there exists $x$ that satisfy (8)-(9). Likewise, the dual problem is feasible if there exists $y$ and (11)-(12). Such $x$ and $y$ are called feasible vectors or feasible solutions.
- The problem ( P ) is said to be infeasible if there is no feasible solution.
- The problem $(\mathrm{P})$ is said to be unbounded if for every real number $K$, there is a feasible $x$, such that

$$
\sum_{i=1}^{n} c_{i} x_{i}<K
$$

- Given a linear program, there are only three possibilities.
- The problem has an optimal solution.
- The problem is infeasible.
- The problem is unbounded.
(One possibility is ruled out: no solution but not unbounded. This is a fact that does not hold for general (nonlinear) optimization problems.)

Weak Duality Theorem. Let $x \in \mathcal{R}^{n}$ and $y \in \mathcal{R}^{m}$ be arbitrary vectors that are feasible to (P) and (D) respectively. Then, the following inequality holds.

$$
\begin{equation*}
\sum_{j=1}^{m} b_{j} y_{j} \leq \sum_{i=1}^{n} c_{i} x_{i} \tag{13}
\end{equation*}
$$

Specifically, if $x^{*}$ solves (P) and $y^{*}$ solves (D), then

$$
\begin{equation*}
\sum_{j=1}^{m} b_{j} y_{j}^{*} \leq \sum_{i=1}^{n} c_{i} x_{i}^{*} \tag{14}
\end{equation*}
$$

- Immediate consequences:
$-(P)$ unbounded $\Rightarrow(D)$ infeasible.
- (D) unbounded $\Rightarrow(\mathrm{P})$ infeasible.
- A stronger result can be obtained.
(Strong) Duality Theorem. If there is a solution $x^{*}$ to the problem (P), then there is a solution $y^{*}$ to the dual problem (D) and the following equality holds.

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i} x_{i}^{*}=\sum_{j=1}^{m} b_{j} y_{j}^{*} \tag{15}
\end{equation*}
$$

- Finally, consider a problem without a nonnegativity constraint (9):

$$
\begin{equation*}
\min \sum_{i=1}^{n} c_{i} x_{i} \tag{16}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j} x_{i} \geq b_{j}, j=1,2, \cdots, m \tag{17}
\end{equation*}
$$

- The problem above can be formulated in the form of (7)-(9) by defining two nonnegative variables $x_{i}^{\prime}$ and $x_{i}^{\prime \prime}$ such that

$$
x_{i}=x_{i}^{\prime}-x_{i}^{\prime \prime}
$$

- The dual of $(16)$ is the following:

$$
\begin{equation*}
\max \sum_{j=1}^{m} b_{j} y_{j} \tag{18}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{j=1}^{m} a_{i j} y_{j}=c_{i}, i=1,2, \cdots, n  \tag{19}\\
& y_{j} \geq 0, j=1,2, \cdots, m \tag{20}
\end{align*}
$$

IX. Back to the Theorem

- Recall now the original problem.
(P) Find $x \in \mathcal{R}^{n}$ that solves the following.

$$
\begin{equation*}
\min \sum_{i \in N} x_{i} \tag{21}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{i \in S} x_{i} \geq v(S) \forall S \subseteq N, S \neq \emptyset \tag{22}
\end{equation*}
$$

- Consider the dual of $(\mathrm{P})$, which is given in the following.
(D) Find $\left(\delta_{S}\right)_{\emptyset \neq S \subseteq N}$ that solves the following.

$$
\begin{equation*}
\max \sum_{S \subseteq N, S \neq \emptyset} \delta_{S} v(S), \tag{23}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{S \subseteq N, i \in S} & \delta_{S}=1, \forall i \in N,  \tag{24}\\
& \delta_{S} \geq 0, \forall S \subseteq N, S \neq \emptyset . \tag{25}
\end{align*}
$$

- Duality theorem (see Appendix) implies that if the solution $\delta^{*}=\left(\delta_{S}^{*}\right)_{S \subseteq N, S \neq \emptyset}$ to the problem (D), then $\sum_{i \in N} x_{i}^{*}=\sum_{S \subseteq N, S \neq \emptyset} \delta_{S}^{*} v(S)$. Thus, for the core to be nonempty, it is necessary and sufficient for $\sum \delta_{S}^{*} v(S) \leq v(N)$.
- A collection of coalitions, $\mathcal{B} \subseteq 2^{N} \backslash\{\emptyset\}$, is said to be a balanced family if there exist weights $\left(\delta_{S}\right)_{S \in \mathcal{B}}$ such that

$$
\sum_{S \in \mathcal{B}, i \in S} \delta_{S}=1, \forall i \in N
$$

- A game $(N, v)$ is said to be balanced if for every balanced family of coalitions $\mathcal{B}$ with nonnegative weights $\left(\delta_{S}\right)_{S \in \mathcal{B}}$,

$$
\sum_{S \in \mathcal{B}} \delta_{S} v(S) \leq v(N) .
$$

## Bondareva-Shapley Theorem (weak version).

$$
\mathcal{C}(N, v) \neq \emptyset \Leftrightarrow(N, v) \text { is balanced. }
$$

- $(N, v)$ being balanced required checking the inequality for all balanced families $\mathcal{B}$. It can be shown that the theorem holds even when considering minimal balanced collections.
- A balanced family $\mathcal{B}$ is a minimal balanced family if there is no balanced family $\mathcal{B}^{\prime}$ with $\mathcal{B}^{\prime} \subsetneq \mathcal{B}$.

Bondareva-Shapley Theorem (strong version).
$\mathcal{C}(N, v) \neq \emptyset \Leftrightarrow$ For every minimal balanced family $\mathcal{B}$,

$$
\sum_{S \in \mathcal{B}} \delta_{S} v(S) \leq v(N) .
$$


[^0]:    ${ }^{1}$ Technically, given a set $X$, a binary relation is associated with a subset of $K \subset X \times X$ where $x \leq y$ $\Leftrightarrow(x, y) \in K$.

