I. Overview

- First model: cooperative game with two players \rightarrow bargaining game
- Abstract mathematical model representing a bargaining situation

II. Nash Bargaining Problem

- A bargaining problem is defined by two components (B, d) where
$-B$, the feasible set, represents the set of payoffs that can be achieved by the two players. It is assumed that $B \subset \mathcal{R}^{2}$.
$-d=\left(d_{1}, d_{2}\right)$, the disagreement point, represents the outcome when bargaining fails. It is assumed that $d \in B$.
- Mathematical assumptions
$-B \subset \mathcal{R}^{2}$ is a compact and convex set.
- There exists $u=\left(u_{1}, u_{2}\right) \in B$ such that $u_{1}>d_{1}$ and $u_{2}>d_{2}$.
- Notation: Let $\tilde{B}=\left\{\left(u_{1}, u_{2}\right) \in B \mid u_{1} \geq d_{1}, u_{2} \geq d_{2}\right\}$.
- Nash's solution: For each (B, d), choose $\left(u_{1}^{*}, u_{2}^{*}\right)$ that solves the following maximization problem:

$$
\begin{equation*}
\max _{\left(u_{1}, u_{2}\right) \in \tilde{B}}\left(u_{1}-d_{1}\right)\left(u_{2}-d_{2}\right) \tag{1}
\end{equation*}
$$

III. Key Definitions and Results from Mathematics

- A set $X \subset \mathcal{R}^{n}$ is closed \Leftrightarrow for every sequence $\left\{x_{k}\right\}_{k=1}^{\infty} \subset X$ such that $x_{k} \rightarrow x$, then $x \in X$.
- A set $X \subset \mathcal{R}^{n}$ is bounded \Leftrightarrow there exists M such that $\left|x_{i}\right| \leq M$ for every $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in X$ and $i=1,2, \cdots, n$
- A set $X \subset \mathcal{R}^{n}$ is compact $\Leftrightarrow X$ is both closed and bounded.
- A set $X \subset \mathcal{R}^{n}$ is convex \Leftrightarrow for every $x, x^{\prime} \in X$ and $\lambda \in[0,1],(1-\lambda) x+\lambda x^{\prime} \in X$.
- For $x, y \in \mathcal{R}^{n}$, define the distance between x and y by

$$
d(x, y)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

- Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in \mathcal{R}^{n}. The sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ is said to converge to x (denoted by $x_{k} \rightarrow x$) if for every $\epsilon>0$, there exists a number N such that for all $n \geq N, d\left(x_{n}, x\right)<\epsilon . \quad x$ is said to be the limit of the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ and is denoted by $\lim _{k \rightarrow \infty} x_{k}=x$.
- Let $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ be two sequences such that $x_{k} \rightarrow x$ and $y_{k} \rightarrow y$.
- For any real numbers α and $\beta, \alpha x_{k}+\beta y_{k} \rightarrow \alpha x+\beta y$.
- If $x_{k} \leq y_{k}$ for all k, then $x \leq y$.
- Let $f: X \rightarrow K$ be a function where $X \subset \mathcal{R}^{n}$ and $K \subset \mathcal{R}^{m}$ are compact. f is said to be continuous if for every sequence $\left\{x_{k}\right\}_{k=1}^{\infty} \subset X, x_{k} \rightarrow x \Rightarrow f\left(x_{k}\right) \rightarrow f(x)$. That is, the sequence $\left\{f\left(x_{k}\right)\right\}_{k=1}^{\infty}$ converges to $f(x)$.

Weierstrauss' Theorem. Let $K \subset \mathcal{R}^{n}$ be a compact set and $f: K \rightarrow \mathcal{R}$ a continuous function. Then, there exists $x^{*} \in K$ such that $f(x) \leq f\left(x^{*}\right) \forall x \in K$. That is, the maximization problem

$$
\max _{x \in K} f(x)
$$

has at least one solution. The statement also holds when "max" is replaced by "min."
IV. Nash Bargaining Solution and Four Axioms

- \mathcal{B} : the set of all bargaining problems
- A bargaining solution is a function $f: \mathcal{B} \rightarrow \mathcal{R}^{2}$ such that for each $(B, d) \in \mathcal{B}$, $f(B, d) \in B$.
- Notation: $f_{i}(B, d)$ denotes the i th component of $f(B, d)(i=1,2)$
- To justify his bargaining solution, Nash showed that
- Nash bargaining solution satisfies four nice properties or axioms. (These will be explained in the following.)
- Nash bargaining solution is the only bargaining solution that satisfies these axioms.

Pareto Efficiency (PE): A bargaining solution f satisfies Pareto efficiency if for each (B, d), there is no $\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in B$ such that $u_{i}^{\prime} \geq f_{i}(B, d)$ for all $i \in\{1,2\}$ and $u_{j}^{\prime}>f_{j}(B, d)$ for some $j \in\{1,2\}$.

- A bargaining problem (B, d) is said to be symmetric if

$$
\begin{aligned}
& -\left(u_{1}, u_{2}\right) \in B \Leftrightarrow\left(u_{2}, u_{1}\right) \in B \\
& -d_{1}=d_{2}
\end{aligned}
$$

Symmetry (SYM): A bargaining solution f satisfies symmetry if for every symmetric bargaining problem $(B, d), f_{1}(B, d)=f_{2}(B, d)$.

- Let $\alpha_{1}>0$ and $\alpha_{2}>0$ be positive real numbers and $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathcal{R}^{2}$. Consider the new bargaining problem $\left(B^{\prime}, d^{\prime}\right)$ where

$$
\begin{align*}
B^{\prime} & =\left\{\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in \mathcal{R}^{2} \mid u_{1}^{\prime}=\alpha_{1} u_{1}+\beta_{1}, u_{2}^{\prime}=\alpha_{2} u_{2}+\beta_{2},\left(u_{1}, u_{2}\right) \in B\right\} \tag{2}\\
d^{\prime} & =\left(d_{1}^{\prime}, d_{2}^{\prime}\right)=\left(\alpha_{1} d_{1}+\beta_{1}, \alpha_{2} d_{2}+\beta_{2}\right) \tag{3}
\end{align*}
$$

- It can be checked that all the assumptions of the bargaining problem $\left(B^{\prime}, d^{\prime}\right)$ are satisfied.

Covariance (COV): f satisfies covariance if for every bargaining problem $\left(B^{\prime}, d^{\prime}\right)$ that are defined by (2) and (3),

$$
f\left(B^{\prime}, d^{\prime}\right)=\left(f_{1}\left(B^{\prime}, d^{\prime}\right), f_{2}\left(B^{\prime}, d^{\prime}\right)\right)=\left(\alpha_{1} f_{1}(B, d)+\beta_{1}, \alpha_{2} f_{2}(B, d)+\beta_{2}\right)
$$

- Other terms of covariance: "Independence of Positive Affine Transformation," "Invariance with Respect to Affine Transformations"

Independence of Irrelevant Alternatives (IIA): f satisfies independence of irrelevant alternatives if for every bargaining problem (B, d) and $U \subseteq B$ such that $d \in U$ with $(U, d) \in \mathcal{B}$,

$$
f(B, d) \in U \Rightarrow f(U, d)=f(B, d)
$$

- The following is a theorem that provides a characterization of the Nash bargaining solution.

Theorem. The Nash bargaining solution is the unique bargaining solution that satisfies PE, SYM, COV, and IIA.
V. A Sketch of the Proof of the Theorem

1. Notation: $H\left(u_{1}, u_{2}\right)=\left(u_{1}-d_{1}\right)\left(u_{2}-d_{2}\right)$. Note that H is a continuous function of $\left(u_{1}, u_{2}\right)$.
2. First, it needs to be established that for each bargaining problem (B, d), maximization problem (1) has a solution and is unique.

- The existence part follows from Weierstrauss' Theorem $-H$ is continuous and the set $\tilde{B}=\left\{\left(u_{1}, u_{2}\right) \in B \mid u_{1} \geq d_{1}, u_{2} \geq d_{2}\right\}$ is compact.
- If there were two solutions - s^{*} and t^{*} with $s^{*} \neq t^{*}$ - to the maximization problem (1), then it can be shown that

$$
\begin{equation*}
H\left(\frac{s_{1}^{*}+t_{1}^{*}}{2}, \frac{s_{2}^{*}+t_{2}^{*}}{2}\right)>H\left(s_{1}^{*}, s_{2}^{*}\right)=H\left(t_{1}^{*}, t_{2}^{*}\right) \tag{4}
\end{equation*}
$$

- Because \tilde{B} is convex, $\left(\frac{s_{1}^{*}+t_{1}^{*}}{2}, \frac{s_{2}^{*}+t_{2}^{*}}{2}\right) \in \tilde{B}$, and equation (4) contradicts the definition of s^{*} and t^{*}.

3. Let f^{N} be a bargaining solution that assigns to each (B, d) the solution of (1). It can be checked that f^{N} satisfies the four axioms. Therefore, this proves the existence of a bargaining solution satisfying the four axioms.
4. To show that there is only one such bargaining solution, let g be a bargaining solution satisfying the four axioms. The objective is to show that for any $(B, d) \in \mathcal{B}$,

$$
g(B, d)=f^{N}(B, d)
$$

5. Take any (B, d) and denote by $u^{*}=f^{N}(B, d)$. Consider a positive affine transformation that transforms (B, d) to $\left(B^{\prime}, d^{\prime}\right)$ such that $d^{\prime}=(0,0)$ and $u^{*}=(1 / 2,1 / 2)$. (Find such α_{i} and $\beta_{i} i=1,2$.)
6. For any $\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in B^{\prime}, u_{1}^{\prime}+u_{2}^{\prime} \leq 1$. (This part can be shown by way of contradiction and using that B^{\prime} is a convex set.)
7. Because B^{\prime} is bounded, there exists an isosceles right triangle that contains B^{\prime}. Let T represent the area enclosed by the triangle including the boundary.
8. $(T,(0,0))$ satisfies the conditions for a bargaining problem:

- T is closed and bounded $\Rightarrow T$ is compact.
- T is convex.
- $(1 / 2,1 / 2) \in T$ is a point that yields higher payoffs for both player than $d^{\prime}=$ $(0,0)$.

9. $f^{N}(T,(0,0))=(1 / 2,1 / 2)$ by direct calculation.
10. $g(T,(0,0))=(1 / 2,1 / 2)$ by PE and SYM. Therefore, $g(T,(0,0))=f^{N}(T,(0,0))$.
11. Because $(0,0) \in B^{\prime},(1 / 2,1 / 2) \in B^{\prime}$, and $B^{\prime} \subset T$ and f^{N} satisfies IIA (by 4.), $f^{N}\left(B^{\prime},(0,0)\right)=(1 / 2,1 / 2)$. Similarly, becauge g satisfies IIA, $g\left(B^{\prime},(0,0)\right)=$ (1/2, 1/2).
12. By COV, $g(B, d)=\left(u_{1}^{*}, u_{2}^{*}\right)=f^{N}(B, d)$.

VI. Alternative Bargaining Solutions

- The fourth axiom (IIA) is not without controversy. (Example will be shown on the board.)
- An alternative axiom : monotonicity (MON)
- Kalai and Smorodinksy (1975) define the following solution and show that it is the only solution satisfying (PE), (SYM), (COV), and (MON) (to be defined later)
- Notation: For a bargaining solution (B, d), define the following

$$
\bar{u}_{i}(B)=\max \left\{u_{i} \mid\left(u_{i}, u_{j}\right) \in B \text { for some } u_{j}\right\} .
$$

The point $\left(\bar{u}_{1}, \bar{u}_{2}\right)$ is called the ideal point.

- To state the monotonicity axiom, define another function g_{i}^{B}, defined on the payoff of the other player u_{j} such that

$$
g_{i}^{B}\left(u_{j}\right)= \begin{cases}u_{i} & \text { if }\left(u_{i}, u_{j}\right) \in B \text { is Pareto efficient } \\ \bar{u}_{i}(B) & \text { otherwise }\end{cases}
$$

Monotonicity (MON): f satisfies monotonicity if for any two bargaining problems (B, d) and $\left(B^{\prime}, d\right)$ such that $\bar{u}_{j}(B)=\bar{u}_{j}\left(B^{\prime}\right)$ and $g_{i}^{B}\left(u_{j}\right) \leq g_{i}^{B^{\prime}}\left(u_{j}\right)$ for all u_{j}, $f_{i}(B, d) \leq f_{i}\left(B^{\prime}, d\right)$ holds.

- The Kalai-Smorodinsky bargaining solution is defined by the following procedure. First, draw a line between d and $\bar{u}(B)=\left(\bar{u}_{1}(B), \bar{u}_{2}(B)\right)$. Then, find the point on this line such that it is in B and is Pareto efficient. This point is the Kalai-Smorodinsky solution of the problem (B, d). Let $f^{K S}$ be the function, called the Kalai-Smorodinsky bargaining solution, such that $f^{K S}(B, d)$ is the KalaiSmorodinsky solution of (B, d).
- $f^{K S}$ is the unique solution that satisfies PE, SYM, COV, and MON. (Kalai and Smorodinksy (1975))
- Nash bargaining solution does not satisfy the following monotonicity condition.
- Another solution: egalitarian solution (Kalai (1977)). For (B, d), the egalitarian solution is a function f^{E} such that $f^{E}(B, d)=\left(u_{1}, u_{2}\right)$ that satisfies the following.

1. $u_{1}-d_{1}=u_{2}-d_{2}$
2. There does not exist $\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in B$ such that $u_{i}^{\prime}>u_{i}$ for all $i=1,2$.
VIII. Nash Bargaining Solution as Equilibrium Outcome of a Noncooperative Bargaining Game

- Nash's original game (Nash (1953))
- Each player i reports u_{i}
- If $\left(u_{1}, u_{2}\right) \in B$, then player i receives u_{i}. If not, each player i receives d_{i}.
- Multiple Nash equilibria due to discontinuity in the payoff function.
- "Smoothing" the payoff function and take limit - only one Nash equilibrium, which is the Nash bargaining solution
- Rubinstein's alternating offers model (Rubinstein (1982)) - now often used for the noncooperative rationale for Nash bargaining solution
- Period 1: Player 1 offers $\left(u_{1}, u_{2}\right) \in B$ to player 2. Player 2 chooses whether to accept or reject this offer.
* Player 2 accept \rightarrow player 1's payoff u_{1} and player 2's payoff is u_{2}
* Player 2 reject \rightarrow Period 2
- Period 2: Player 2 offers $\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in B$ to player 1. Player 1 chooses whether to accept or reject.
* Player 1 accept \rightarrow player 1's payoff δu_{1}^{\prime} and player 2's payoff is δu_{2}^{\prime} where δ is the discount factor with $0<\delta<1$.
* Player 1 reject \rightarrow Period 3
- It can be shown that any payoff outcome in the bargaining region B can be achieved via a Nash equilibrium. However, there is only one subgame-perfect equilibrium. The details of the results are shown below.

Theorem. There exists a unique subgame-perfect equilibrium of this game. This equilibrium satisfies the following.

1. The strategies of the players are stationary - they always propose the same proposal, and their condition to accepting or rejecting an offer is the same throughout.
2. In equilibrium, Player 1's proposal is accepted - there is no delay in bargaining.
3. Moreover, as $\delta \rightarrow 1$, the equilibrium payoffs converge to the Nash bargaining solution.
IX. Some Notes on the Literature

- The original model - Nash (1950)
- Nash's bargaining game and axioms - Nash (1953)
- Kalai-Smorodinsky solution - Kalai and Smorodinksy (1975)
- Egalitarian solution and other proportional solutions - Kalai (1977)

References

Kalai, E. (1977). Proportional solutions to bargaining situations: Interpersonal utility comparisons. Econometrica 45, 1623-1630.

Kalai, E. and M. Smorodinksy (1975). Other solution to Nash's bargaining problem. Econometrica 43, 513-518.

Nash, J. F. (1950). The bargaining problem. Econometrica 18, 155-162.
Nash, J. F. (1953). Two-person cooperative games. Econometrica 21, 128-140.
Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica 50, 97-109.

