
The Bargaining Problem and Bargaining Solutions

I. Overview

• First model: cooperative game with two players → bargaining game

• Abstract mathematical model representing a bargaining situation

II. Nash Bargaining Problem

• A bargaining problem is defined by two components (B, d) where

– B, the feasible set, represents the set of payoffs that can be achieved by the

two players. It is assumed that B ⊂ R2.

– d = (d1, d2), the disagreement point, represents the outcome when bargain-

ing fails. It is assumed that d ∈ B.

• Mathematical assumptions

– B ⊂ R2 is a compact and convex set.

– There exists u = (u1, u2) ∈ B such that u1 > d1 and u2 > d2.

• Notation: Let B̃ = {(u1, u2) ∈ B|u1 ≥ d1, u2 ≥ d2}.

• Nash’s solution: For each (B, d), choose (u∗1, u
∗
2) that solves the following maxi-

mization problem:

max
(u1,u2)∈B̃

(u1 − d1)(u2 − d2) (1)

III. Key Definitions and Results from Mathematics

• A set X ⊂ Rn is closed ⇔ for every sequence {xk}∞k=1 ⊂ X such that xk → x,

then x ∈ X.

• A set X ⊂ Rn is bounded ⇔ there exists M such that |xi| ≤ M for every

x = (x1, x2, · · · , xn) ∈ X and i = 1, 2, · · · , n

• A set X ⊂ Rn is compact ⇔ X is both closed and bounded.

• A set X ⊂ Rn is convex ⇔ for every x, x′ ∈ X and λ ∈ [0, 1], (1− λ)x+ λx′ ∈ X.

• For x, y ∈ Rn, define the distance between x and y by

d(x, y) =

(
n∑

i=1

(xi − yi)
2

)1/2
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• Let {xk}∞k=1 be a sequence in Rn. The sequence {xk}∞k=1 is said to converge to

x (denoted by xk → x) if for every ϵ > 0, there exists a number N such that for

all n ≥ N , d(xn, x) < ϵ. x is said to be the limit of the sequence {xk}∞k=1 and is

denoted by limk→∞ xk = x.

• Let {xk} and {yk} be two sequences such that xk → x and yk → y.

– For any real numbers α and β, αxk + βyk → αx+ βy.

– If xk ≤ yk for all k, then x ≤ y.

• Let f : X → K be a function where X ⊂ Rn and K ⊂ Rm are compact. f is said

to be continuous if for every sequence {xk}∞k=1 ⊂ X, xk → x ⇒ f(xk) → f(x).

That is, the sequence {f(xk)}∞k=1 converges to f(x).

Weierstrauss’ Theorem. Let K ⊂ Rn be a compact set and f : K → R a

continuous function. Then, there exists x∗ ∈ K such that f(x) ≤ f(x∗) ∀x ∈ K.

That is, the maximization problem

max
x∈K

f(x)

has at least one solution. The statement also holds when “max” is replaced by “min.”

IV. Nash Bargaining Solution and Four Axioms

• B: the set of all bargaining problems

• A bargaining solution is a function f : B → R2 such that for each (B, d) ∈ B,
f(B, d) ∈ B.

• Notation: fi(B, d) denotes the ith component of f(B, d) (i = 1, 2)

• To justify his bargaining solution, Nash showed that

– Nash bargaining solution satisfies four nice properties or axioms. (These will

be explained in the following.)

– Nash bargaining solution is the only bargaining solution that satisfies these

axioms.
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Pareto Efficiency (PE): A bargaining solution f satisfies Pareto efficiency if for

each (B, d), there is no (u′1, u
′
2) ∈ B such that u′i ≥ fi(B, d) for all i ∈ {1, 2} and

u′j > fj(B, d) for some j ∈ {1, 2}.

• A bargaining problem (B, d) is said to be symmetric if

– (u1, u2) ∈ B ⇔ (u2, u1) ∈ B

– d1 = d2

Symmetry (SYM): A bargaining solution f satisfies symmetry if for every sym-

metric bargaining problem (B, d), f1(B, d) = f2(B, d).

• Let α1 > 0 and α2 > 0 be positive real numbers and β = (β1, β2) ∈ R2. Consider

the new bargaining problem (B′, d′) where

B′ = {(u′1, u′2) ∈ R2|u′1 = α1u1 + β1, u
′
2 = α2u2 + β2, (u1, u2) ∈ B} (2)

d′ = (d′1, d
′
2) = (α1d1 + β1, α2d2 + β2) (3)

• It can be checked that all the assumptions of the bargaining problem (B′, d′) are

satisfied.

Covariance (COV): f satisfies covariance if for every bargaining problem (B′, d′)

that are defined by (2) and (3),

f(B′, d′) =
(
f1(B

′, d′), f2(B
′, d′)

)
= (α1f1(B, d) + β1, α2f2(B, d) + β2)

• Other terms of covariance: ”Independence of Positive Affine Transformation,” ”In-

variance with Respect to Affine Transformations”
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Independence of Irrelevant Alternatives (IIA): f satisfies independence of

irrelevant alternatives if for every bargaining problem (B, d) and U ⊆ B such that

d ∈ U with (U, d) ∈ B,

f(B, d) ∈ U ⇒ f(U, d) = f(B, d).

• The following is a theorem that provides a characterization of the Nash bargaining

solution.

Theorem. The Nash bargaining solution is the unique bargaining solution that

satisfies PE, SYM, COV, and IIA.

V. A Sketch of the Proof of the Theorem

1. Notation: H(u1, u2) = (u1 − d1)(u2 − d2). Note that H is a continuous function of

(u1, u2).

2. First, it needs to be established that for each bargaining problem (B, d), maximiza-

tion problem (1) has a solution and is unique.

• The existence part follows from Weierstrauss’ Theorem – H is continuous and

the set B̃ = {(u1, u2) ∈ B|u1 ≥ d1, u2 ≥ d2} is compact.

• If there were two solutions – s∗ and t∗ with s∗ ̸= t∗ – to the maximization

problem (1), then it can be shown that

H

(
s∗1 + t∗1

2
,
s∗2 + t∗2

2

)
> H(s∗1, s

∗
2) = H(t∗1, t

∗
2) (4)

• Because B̃ is convex,
(
s∗1+t∗1

2 ,
s∗2+t∗2

2

)
∈ B̃, and equation (4) contradicts the

definition of s∗ and t∗.

3. Let fN be a bargaining solution that assigns to each (B, d) the solution of (1).

It can be checked that fN satisfies the four axioms. Therefore, this proves the

existence of a bargaining solution satisfying the four axioms.
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4. To show that there is only one such bargaining solution, let g be a bargaining

solution satisfying the four axioms. The objective is to show that for any (B, d) ∈ B,

g(B, d) = fN (B, d).

5. Take any (B, d) and denote by u∗ = fN (B, d). Consider a positive affine transfor-

mation that transforms (B, d) to (B′, d′) such that d′ = (0, 0) and u∗ = (1/2, 1/2).

(Find such αi and βi i = 1, 2.)

6. For any (u′1, u
′
2) ∈ B′, u′1+u′2 ≤ 1. (This part can be shown by way of contradiction

and using that B′ is a convex set.)

7. Because B′ is bounded, there exists an isosceles right triangle that contains B′. Let

T represent the area enclosed by the triangle including the boundary.

8. (T, (0, 0)) satisfies the conditions for a bargaining problem:

• T is closed and bounded ⇒ T is compact.

• T is convex.

• (1/2, 1/2) ∈ T is a point that yields higher payoffs for both player than d′ =

(0, 0).

9. fN (T, (0, 0)) = (1/2, 1/2) by direct calculation.

10. g (T, (0, 0)) = (1/2, 1/2) by PE and SYM. Therefore, g(T, (0, 0)) = fN (T, (0, 0)).

11. Because (0, 0) ∈ B′, (1/2, 1/2) ∈ B′, and B′ ⊂ T and fN satisfies IIA (by

4.), fN (B′, (0, 0)) = (1/2, 1/2). Similarly, becauge g satisfies IIA, g(B′, (0, 0)) =

(1/2, 1/2).

12. By COV, g(B, d) = (u∗1, u
∗
2) = fN (B, d).

VI. Alternative Bargaining Solutions

• The fourth axiom (IIA) is not without controversy. (Example will be shown on the

board.)

• An alternative axiom : monotonicity (MON)

• Kalai and Smorodinksy (1975) define the following solution and show that it is the

only solution satisfying (PE), (SYM), (COV), and (MON) (to be defined later)
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• Notation: For a bargaining solution (B, d), define the following

ūi(B) = max{ui|(ui, uj) ∈ B for some uj}.

The point (ū1, ū2) is called the ideal point.

• To state the monotonicity axiom, define another function gBi , defined on the payoff

of the other player uj such that

gBi (uj) =

ui if (ui, uj) ∈ B is Pareto efficient

ūi(B) otherwise

Monotonicity (MON): f satisfies monotonicity if for any two bargaining prob-

lems (B, d) and (B′, d) such that ūj(B) = ūj(B
′) and gBi (uj) ≤ gB

′
i (uj) for all uj ,

fi(B, d) ≤ fi(B
′, d) holds.

• The Kalai-Smorodinsky bargaining solution is defined by the following pro-

cedure. First, draw a line between d and ū(B) = (ū1(B), ū2(B)). Then, find

the point on this line such that it is in B and is Pareto efficient. This point is

the Kalai-Smorodinsky solution of the problem (B, d). Let fKS be the function,

called the Kalai-Smorodinsky bargaining solution, such that fKS(B, d) is the Kalai-

Smorodinsky solution of (B, d).

• fKS is the unique solution that satisfies PE, SYM, COV, and MON. (Kalai and

Smorodinksy (1975))

• Nash bargaining solution does not satisfy the following monotonicity condition.

• Another solution: egalitarian solution (Kalai (1977)). For (B, d), the egalitarian

solution is a function fE such that fE(B, d) = (u1, u2) that satisfies the following.

1. u1 − d1 = u2 − d2

2. There does not exist (u′1, u
′
2) ∈ B such that u′i > ui for all i = 1, 2.

VIII. Nash Bargaining Solution as Equilibrium Outcome of a Noncooperative Bargaining

Game

• Nash’s original game (Nash (1953))
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– Each player i reports ui

– If (u1, u2) ∈ B, then player i receives ui. If not, each player i receives di.

– Multiple Nash equilibria due to discontinuity in the payoff function.

– ”Smoothing” the payoff function and take limit – only one Nash equilibrium,

which is the Nash bargaining solution

• Rubinstein’s alternating offers model (Rubinstein (1982)) – now often used for the

noncooperative rationale for Nash bargaining solution

– Period 1: Player 1 offers (u1, u2) ∈ B to player 2. Player 2 chooses whether

to accept or reject this offer.

∗ Player 2 accept → player 1’s payoff u1 and player 2’s payoff is u2

∗ Player 2 reject → Period 2

– Period 2: Player 2 offers (u′1, u
′
2) ∈ B to player 1. Player 1 chooses whether

to accept or reject.

∗ Player 1 accept → player 1’s payoff δu′1 and player 2’s payoff is δu′2 where

δ is the discount factor with 0 < δ < 1.

∗ Player 1 reject → Period 3

– It can be shown that any payoff outcome in the bargaining region B can be

achieved via a Nash equilibrium. However, there is only one subgame-perfect

equilibrium. The details of the results are shown below.

Theorem. There exists a unique subgame-perfect equilibrium of this game. This

equilibrium satisfies the following.

1. The strategies of the players are stationary – they always propose the same

proposal, and their condition to accepting or rejecting an offer is the same

throughout.

2. In equilibrium, Player 1’s proposal is accepted – there is no delay in bargaining.

3. Moreover, as δ → 1, the equilibrium payoffs converge to the Nash bargaining

solution.

IX. Some Notes on the Literature

• The original model – Nash (1950)
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• Nash’s bargaining game and axioms – Nash (1953)

• Kalai-Smorodinsky solution – Kalai and Smorodinksy (1975)

• Egalitarian solution and other proportional solutions – Kalai (1977)
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