Application：Household＇s Decision Making in Continuous Time

Ryoji Ohdoi
Dept．of Industrial Engineering and Economics，Tokyo Tech

revised on June 27， 2016

1 Household＇s Utility Maximization Problem

－Consider the following utility maximization problem of a household：

$$
\begin{array}{ll}
\max & U_{0}=\int_{0}^{\infty} \exp (-\rho t) u\left(c_{t}\right) d t \\
\text { s.t. } & \dot{a}_{t}\left(\equiv d a_{t} / d t\right)=r a_{t}+w_{t}-c_{t} \quad \text { (flow budget constraint), } \\
& a_{0} \text { given } \quad \text { (initial condition), } \\
& \lim _{t \rightarrow \infty} a_{t} \exp (-r t) \geq 0 \quad \text { (no-Ponzi-game condition), }
\end{array}
$$

where
－a_{t} and c_{t} ：amount of her assets（state）and consumption（control）；a dot over a variable indicates a time derivative．
$-r$ and w_{t} ：the interest－and wage rate，the former of which is assumed to be constant over time for simplicity，

Assumption 1．r is constant over time．
$-\rho>0$ ：the subjective discount rate，
－$u(c)$ ：the instantaneous utility function（瞬時効用関数），assumed to be $u^{\prime}>0$ and $u^{\prime \prime}<0$ ．
－The no－Ponzi－game condition（hereafter，NPG）ensures that the household does not asymptotically tend to a negative wealth．Without this condition，the household can increase her consumption by borrowing to such level that feasibility is violated．
－In the lecture note on $6 / 21$ ，we have rigorously shown that the Euler equation and the transversality condition（TVC）are the sufficient conditions of the solutions under the concavity of u ．（here the strict concavity is assumed）．
－To derive these conditions，let us use the following cookbook procedure：

Step 0．Construct the following Lagrangian associated with the＂finite－horizon counter－ part＂of the above problem：

$$
\begin{aligned}
L & =\int_{0}^{T}\left\{e^{-\rho t} u\left(c_{t}\right)+\lambda_{t}\left[r a_{t}+w_{t}-c_{t}-\dot{a}_{t}\right]\right\} d t+\zeta a_{T} e^{-r T} \\
& =\int_{0}^{T} e^{-\rho t}\left\{u\left(c_{t}\right)+\mu_{t}\left[r a_{t}+w_{t}-c_{t}-\dot{a}_{t}\right]\right\} d t+\zeta a_{T} e^{-r T}, \quad \mu_{t}=\lambda_{t} e^{\rho t},
\end{aligned}
$$

L is further rewritten as follows：

$$
L=\int_{0}^{T} e^{-\rho t}\left[H\left(a_{t}, c_{t}, \mu_{t}\right)+\left(\dot{\mu}_{t}-\rho \mu_{t}\right) a_{t}\right] d t-\mu_{T} a_{T} e^{-\rho T}+\mu_{0} a_{0}+\zeta a_{T} e^{-r T}
$$

where H is called the current－value Hamiltonian（当該価値ハミルトニアン）：

$$
H\left(a_{t}, c_{t}, \mu_{t}\right)=u\left(c_{t}\right)+\mu_{t}\left(r a_{t}+w_{t}-c_{t}\right) .
$$

Step 1．Derive the first－order－conditions：

$$
\begin{align*}
c_{t}: & \partial H / \partial c_{t}=0, \tag{1}\\
a_{t}: & \partial H / \partial a_{t}+\dot{\mu}_{t}-\rho \mu_{t}=0, \tag{2}\\
a_{T}: & \mu_{T} e^{-\rho T}=\zeta e^{-r T}, \tag{3}\\
\zeta: & a_{T} e^{-r T} \geq 0, \zeta a_{T} e^{-r T}=0 . \tag{4}
\end{align*}
$$

Step 2．Make simpler expressions：

$$
\begin{align*}
& \partial H / \partial c_{t}=0 \Leftrightarrow u^{\prime}\left(c_{t}\right)=\mu_{t}, \tag{5}\\
& \partial H / \partial a_{t}+\dot{\mu}_{t}-\rho \mu_{t}=0 \Leftrightarrow \dot{\mu}_{t} / \mu_{t}=\rho-r, \tag{6}\\
& \mu_{T} a_{T} e^{-\rho T}=0 . \tag{7}
\end{align*}
$$

Step 3．Take the limit of $T \rightarrow \infty$ in（5）－（7）．
－Differentiating both sides of（5）with respect to time，

$$
\begin{equation*}
\frac{c_{t} u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)} \frac{\dot{c}_{t}}{c_{t}}=\frac{\dot{\mu}_{t}}{\mu_{t}} . \tag{8}
\end{equation*}
$$

－Substituting（8）into（6）yields：

$$
\begin{equation*}
-\frac{c_{t} u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)} \frac{\dot{c}_{t}}{c_{t}}=r_{t}-\rho . \tag{9}
\end{equation*}
$$

（6），or（9）is called the Euler equation．In the context of Macroeconomics，this is also called Keynes－Ramsey Rule．

2 Some Features

2.1 Economic Implications of Euler Equation

- What does the Euler equation provide us?
\rightarrow Suppose that the household decreases c_{t} but increases $c_{t+\Delta t}$ with U_{0} unchanged.

Caution: Rigorously, in continuous time models we can not change the variable at an instant of time. However, short-cuts like this do lead usable results.

- By differentiating the life-time utility, and imposing $d U_{0}=0$, we have the marginal rate of substitution (MRS) of consumption at t for $t+\Delta t$:

$$
\begin{aligned}
d U_{0}=0 & \Rightarrow u^{\prime}\left(c_{t}\right) d c_{t}+e^{-\rho \Delta t} u^{\prime}\left(c_{t+\Delta t}\right) d c_{t+\Delta t} \\
& \Rightarrow-\frac{d c_{t+\Delta t}}{d c_{t}}=\frac{u^{\prime}\left(c_{t}\right)}{e^{-\rho \Delta t} u^{\prime}\left(c_{t+\Delta t}\right)} .
\end{aligned}
$$

- In analogy with a two-period utility maximization problem, the above MRS must be equal to the gross interest rate:

$$
\begin{gather*}
\frac{u^{\prime}\left(c_{t}\right)}{e^{-\rho \Delta t} u^{\prime}\left(c_{t+\Delta t}\right)}=1+r \Delta t \\
\Rightarrow \quad \frac{1}{\Delta t} \frac{u^{\prime}\left(c_{t}\right)-e^{-\rho \Delta t} u^{\prime}\left(c_{t+\Delta t}\right)}{e^{-\rho \Delta t} u^{\prime}\left(c_{t+\Delta t}\right)}=r . \tag{10}
\end{gather*}
$$

- Taking the limit $\Delta t \rightarrow 0$, we obtain

$$
\begin{equation*}
\rho-\frac{c_{t} u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)} \frac{\dot{c}_{t}}{c_{t}}=r . \tag{11}
\end{equation*}
$$

This equation (11) is exactly the Euler equation.

2.2 How does consumption change over time?

- Euler equation (9), or (11) implies that consumption increases or decreases over time depending on whether the interest rate exceeds or is less than the subjective discount rate: Given $c_{t}>0$,

$$
\dot{c}_{t} \gtreqless 0 \Leftrightarrow r \gtreqless \rho,
$$

which comes from the fact that $-c u^{\prime \prime} / u^{\prime}>0$ as long as $c>0$.
\rightarrow The sign of gap $r-\rho$ determines whether or not consumption grows over time.

Proposition 1. Suppose that $c_{t}>0$ for all $t \geq 0$. Consumption increases (decreases) over time if and only if $r>(<) \rho$, and remains constant if and only if $r=\rho$.
－On the other hand，$-c u^{\prime \prime} / u^{\prime}>0$ ，which is the elasticity of marginal utility，determines steepness of the slope of consumption：

$$
\frac{\dot{c}_{t}}{c_{t}}=\left(-\frac{c_{t} u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)}\right)^{-1}(r-\rho) .
$$

$\rightarrow\left(-c u^{\prime \prime} / u^{\prime}\right)^{-1}$ is therefore called the degree of intertemporal elasticity of substitution （IES，異時点間の代替の弾力性）．

Definition 1 （Intertemporal Elasticity of Substitution between t and $t+\Delta t$ ）．

$$
\sigma(t, t+\Delta t)=\frac{d \log \left(c_{t+\Delta t} / c_{t}\right)}{d \log (1+r \Delta t)}
$$

Lemma 1．Under the situation（10）holds， $\lim _{\Delta t \rightarrow 0} \sigma(t, t+\Delta t)=\left(-\frac{c_{t} u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)}\right)^{-1}$ ． Proof．Exercise．

Proposition 2．The growth rate of consumption becomes higher if the value of IES becomes higher．

2．3 Difference between TVC and NPG

－Note that the household can not only lend to other households，but also borrow from them．This directly means a_{t} can be negative．
－Therefore，in the absence of any restrictions on borrowing，the solution to the maximiza－ tion problem is a trivial one：it is optimal for the households to accumulate debts and to maintain a level of consumption such that the marginal utility of consumption equals zero．
\rightarrow NPG is the constraint that prohibits the household to do so．
－On the other hand，the TVC in this problem can be also expressed as

$$
\begin{equation*}
\lim _{t \rightarrow \infty} a_{t} \exp (-r t)=0 \tag{12}
\end{equation*}
$$

－So do not confuse the NPG and TVC：
－NPG：the constraint that prohibits the household to default on sovereign debt， whereas
－TVC：the condition for utility maximization under NPG is imposed．

3 Consumption Behaviors

Then，how does the household decide the optimal paths of consumption and assets？

3．1 Intertemporal Budget Constraint

－The flow budget constraint of the household is expressed as

$$
\dot{a}_{t}-r a_{t}=w_{t}-c_{t} .
$$

－Multiplying both sides by $e^{-r t}$ and integrating the resulting equation from 0 to ∞ ，

$$
\begin{equation*}
\lim _{t \rightarrow \infty} a_{t} \exp (-r t)-a_{0}=\int_{0}^{\infty} w_{t} e^{-r t} d t-\int_{0}^{\infty} c_{t} e^{-r t} d t \tag{13}
\end{equation*}
$$

－（13）is the intertemporal budget constraint（異時点間の予算制約式）．This equation gives us the following two important features of the model：

1．The household can not plan without anticipating the entire path of both w_{t} and r ．
\rightarrow Expectations are crucial ！
2．$e^{-r t}$ can be viewed as the price of the good at date t ．
－The TVC shows that the first term on the left－hand－side of（13）is zero：

$$
\begin{equation*}
\int_{0}^{\infty} c_{t} e^{-r t} d t=a_{0}+\int_{0}^{\infty} w_{t} e^{-r t} d t . \tag{14}
\end{equation*}
$$

3．2 Consumption Function

－The instantaneous utility u is often specified as

$$
u(c)= \begin{cases}\frac{c^{1-\theta}-1}{1-\theta} & \text { for } \theta>0, \theta \neq 1, \tag{15}\\ \ln c & \text { for } \theta=1\end{cases}
$$

－This function is called the CRRA utility function，where CRRA is the abbreviated name of the＂Constant Relative Risk Aversion．＂The degree of relative risk aversion is defined as

$$
\text { degree of RRA }=-\frac{c u^{\prime \prime}(c)}{u^{\prime}(c)}
$$

\rightarrow This becomes constant，θ ，if u is specified as（15）．
\rightarrow The value of intertemporal elasticity of substitution also becomes constant， $1 / \theta$ ．
－Then，the Euler equation（9）becomes

$$
\begin{equation*}
\dot{c}_{t} / c_{t}=\theta^{-1}(r-\rho) . \tag{16}
\end{equation*}
$$

\rightarrow By using the method of separation of variables，we easily have

$$
\begin{equation*}
c_{t}=c_{0} \exp \left[\theta^{-1}(r-\rho) t\right], \tag{17}
\end{equation*}
$$

- Substituting (17) into (14) yields

$$
\begin{equation*}
c_{0} \int_{0}^{\infty} \exp \left[\left(\frac{(1-\theta) r-\rho}{\theta}\right) t\right] d t=a_{0}+\int_{0}^{\infty} w_{t} e^{-r t} d t \tag{18}
\end{equation*}
$$

Assumption 2. $(1-\theta) r<\rho$.

- Then, we can solve (18) for c_{0} :

$$
c_{0}=\frac{\rho-(1-\theta) r}{\theta}\left(a_{0}+\int_{0}^{\infty} w_{t} e^{-r t} d t\right) .
$$

- It is easily verified that the consumption function given above applies for all t :

$$
\begin{equation*}
c_{t}=\frac{\rho-(1-\theta) r}{\theta}\left(a_{t}+\int_{t}^{\infty} w_{\tau} e^{-r(\tau-t)} d \tau\right) . \tag{19}
\end{equation*}
$$

(19) gives the consumption function of the dynamically optimizing household.
\rightarrow What factors affect consumption? How?

